39 resultados para RESONANCE FREQUENCY-ANALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sonochemical oxidation efficiency (eta(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, eta(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest eta(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on eta(ox). This is supported by the luminol images, the measured dependence of eta(ox). on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on eta(ox). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm based only on the impedance cardiogram (ICG) recorded through two defibrillation pads, using the strongest frequency component and amplitude, incorporated into a defibrillator could determine circulatory arrest and reduce delays in starting cardiopulmonary resuscitation (CPR). Frequency analysis of the ICG signal is carried out by integer filters on a sample by sample basis. They are simpler, lighter and more versatile when compared to the FFT. This alternative approach, although less accurate, is preferred due to the limited processing capacity of devices that could compromise real time usability of the FFT. These two techniques were compared across a data set comprising 13 cases of cardiac arrest and 6 normal controls. The best filters were refined on this training set and an algorithm for the detection of cardiac arrest was trained on a wider data set. The algorithm was finally tested on a validation set. The ICG was recorded in 132 cardiac arrest patients (53 training, 79 validation) and 97 controls (47 training, 50 validation): the diagnostic algorithm indicated cardiac arrest with a sensitivity of 81.1% (77.6-84.3) and specificity of 97.1% (96.7-97.4) for the validation set (95% confidence intervals). Automated defibrillators with integrated ICG analysis have the potential to improve emergency care by lay persons enabling more rapid and appropriate initiation of CPR and when combined with ECG analysis they could improve on the detection of cardiac arrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady gas dynamic phenomena in engine intake systems of the type found in racecars have been examined. In particular, the resonant tuning effects, including cylinder-to-cylinder power variations, which can occur as a result of the interaction between an engine and its airbox have been considered. Frequency analysis of the output from a Virtual 4-Stroke 1D engine simulation was used to characterise the forcing function applied by an engine to an airbox. A separate computational frequency sweeping technique, which employed the CFD package FLUENT, was used to determine the natural frequencies of virtual airboxes in isolation from an engine. Using this technique, an airbox with a natural frequency at 75 Hz was designed for a Yamaha R6 4-cylinder motorcycle engine. The existence of an airbox natural frequency at 75 Hz was subsequently confirmed by an experimental frequency sweeping technique carried out on the engine test bed. A coupled 1D/3D analysis which employed the engine simulation package Virtual 4-Stroke and the CFD package FLUENT, was used to model the combined engine and airbox system. The coupled 1D/3D analysis predicted a 75 Hz resonance of the airbox at an engine speed of 9000 rpm. This frequency was the induction frequency for a single cylinder. An airbox was fabricated and tested on the engine. Static pressure was recorded at a grid of points in the airbox as the engine was swept through a speed range of 3000 to 10000 rpm. The measured engine speed corresponding to resonance in the airbox agreed well with the predicted values. There was also good correlation between the amplitude and phase of the pressure traces recorded within the airbox and the 1D/3D predictions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Closed-form design equations for the operation of a class-E amplifier for zero switch voltage slope and arbitrary duty cycle are derived. This approach allows an additional degree of freedom in the design of class-E amplifiers which are normally designed for 50 duty ratio. The analysis developed permits the selection of non-unique solutions where amplifier efficiency is theoretically 100 but power output capability is less than that the 50 duty ratio case would permit. To facilitate comparison between 50 (optimal) and non-50 (suboptimal) duty ratio cases, each important amplifier parameter is normalised to its corresponding optimum operation value. It is shown that by choosing a non-50 suboptimal solution, the operating frequency of a class-E amplifier can be extended. In addition, it is shown that by operating the amplifier in the suboptimal regime, other amplifier parameters, for example, transistor output capacitance or peak switch voltage, can be included along with the standard specification criteria of output power, DC supply voltage and operating frequency as additional input design specifications. Suboptimum class-E operation may have potential advantages for monolithic microwave integrated circuit realisation as lower inductance values (lower series resistance, higher self-resonance frequency, less area) may be required when compared with the results obtained for optimal class-E amplifier synthesis. The theoretical analysis conducted here was verified by harmonic balance simulation, with excellent agreement between both methods. © The Institution of Engineering and Technology 2007.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dyslipidemia accelerates vascular complications of diabetes. Nuclear magnetic resonance (NMR) analysis of lipoprotein subclasses is used to evaluate a mouse model of human familial hypercholesterolemia +/- streptozotocin (STZ)-induced diabetes. A double knockout (DKO) mouse (low-density lipoprotein receptor [LDLr] -/-; apolipoprotein B [apoB] mRNA editing catalytic polypeptide-1 [Apobec1] -/-) was studied. Wild-type (WT) and DKO mice received sham or STZ injections at age 7 weeks, yielding control (WT-C, DKO-C) and diabetic (WT-D, DKO-D) groups. Fasting serum was collected when the mice were killed (age 40 weeks) for Cholestech analysis (Cholestech Corp, Hayward, CA) and NMR lipoprotein subclass profile. By Cholestech, fasting triglyceride and total cholesterol increased in DKO-C versus WT-C. Diabetes further increased total cholesterol in DKO. High-density lipoprotein cholesterol (HDL-C) was similar among all groups. NMR revealed that LDL in all groups was present in a subclass the size of large human LDL and was increased 48-fold in DKO-C versus WT-C animals, but was unaffected by diabetes. HDL was found in a subclass equivalent to large human HDL, and was similar among groups. In conclusion, NMR analysis reveals lipoprotein subclass distributions and the effects of genetic modification and diabetes in mice, but lack of particles the size of human small LDL and small HDL may limit the relevance of the present animal model to human disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work is an evaluation of quantitative measurements of piezoresponse force microscopy for nanoscale characterization of ferroelectric films. To this end, we investigate how the piezoresponse phase difference Delta Phi between c domains depends on the frequency omega of the applied ac field much lower than the cantilever first resonance frequency. The main specimen under study was a 102 nm thick film of Pb(Zr(0.2)Ti(0.8))O(3). For the sake of comparison, a 100 nm thick PbTiO(3) film was also used. From our measurements, we conclude a frequency dependent behavior Delta Phi similar to omega(-1), which can only be partially explained by the presence of adsorbates on the surface. (C) 2008 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aminolevulinic acid (ALA) stability within topical formulations intended for photodynamic therapy (PDT) is poor due to dimerisation to pyrazine-2,5-dipropionic acid (PY). Most strategies to improve stability use low pH vehicles, which can cause cutaneous irritancy. To overcome this problem, a novel approach is investigated that uses a non-aqueous vehicle to retard proton-induced charge separation across the 4-carbonyl group on ALA and lessen nucleophilic attack that leads to condensation dimerisation. Bioadhesive anhydrous vehicles based on methylvinylether-maleic anhydride copolymer patches and poly(ethyleneglycol) or glycerol thickened poly(acrylic acid) gels were formulated. ALA stability fell below pharmaceutically acceptable levels after 6 months, with bioadhesive patches stored at 5°C demonstrating the best stability by maintaining 86.2% of their original loading. Glycerol-based gels maintained 40.2% in similar conditions. However, ALA loss did not correspond to expected increases in PY, indicating the presence of another degradative process that prevented dimerisation. Nuclear magnetic resonance (NMR) analysis was inconclusive in respect of the mechanism observed in the patch system, but showed clearly that an esterification reaction involving ALA and both glycerol and poly(ethyleneglycol) was occurring. This was especially marked in the glycerol gels, where only 2.21% of the total expected PY was detected after 204 days at 5°C. Non-specific esterase hydrolysis demonstrated that ALA was recoverable from the gel systems, further supporting esterified binding within the gel matrices. It is conceivable that skin esterases could duplicate this finding upon topical application of the gel and convert these derivatives back to ALA in situ, provided skin penetration is not affected adversely.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Channelled waves in 2-D periodic anisotropic L-C mesh metamaterials have been investigated. Circuit simulation and the newly developed analytical model of a unit cell have demonstrated full qualitative agreement for both lossless and lossy cases. Isofrequencies for a lattice unit cell and the circuit simulations of finite meshes have shown that propagating waves are channelled from a point source as pencil beams which can travel only along specific trajectories. The beam direction varies with frequency, and at the resonance frequency, the phase and group velocities of the travelling wave are orthogonal. The effect of losses was explored, and it was shown that losses cause qualitative changes of the channelled wave type. It was proven that the channelled waves do not follow the laws of geometrical optics (Snell's law, specular reflection, etc.) at the interfaces of L-C meshes but are governed by the conditions of phase synchronism and impedance matching. Only in the special case of dual L-C and C-L meshes with the interface parallel to the axis of rectangular grid excited at the resonance frequency (X=1) do the channels follow the trajectories of optical rays. A planar mesh test cell has been designed and used for retrieving the unit cell L-C parameters from the S-parameter measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The radiation efficiency and resonance frequency of five compact antennas worn by nine individual test subjects was measured at 2.45 GHz in a reverberation chamber. The results show that, despite significant differences in body mass, wearable antenna radiation efficiency had a standard deviation less than 0.6 dB and the resonance frequency shift was less than 1% between test subjects. Variability in the radiation efficiency and resonance frequency shift between antennas was largely dependant on body tissue coupling which is related to both antenna geometry and radiation characteristics. The reverberation chamber measurements were validated using a synthetic tissue phantom and compared with results obtained in a spherical near field chamber and finite-difference time-domain (FDTD) simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer extrusion is one of the major methods of processing polymer materials and advanced process monitoring is important to ensure good product quality. However, commonly used process monitoring devices, e.g. temperature and pressure sensors, are limited in providing information on process dynamics inside an extruder barrel. Screw load torque dynamics, which may occur due to changes in solids conveying, melting, mixing, melt conveying, etc., are believed to be a useful indicator of process fluctuations inside the extruder barrel. However, practical measurement of the screw load torque is difficult to achieve. In this work, inferential monitoring of the screw load torque signal in an extruder was shown to be possible by monitoring the motor current (armature and/or field) and simulation studies were used to check the accuracy of the proposed method. The ability of this signal to aid identification and diagnosis of process issues was explored through an experimental investigation. Power spectral density and wavelet frequency analysis were implemented together with a covariance analysis. It was shown that the torque signal is dominated by the solid friction in the extruder and hence it did not correlate well with melting fluctuations. However, it is useful for online identification of solids conveying issues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wavelet transforms provide basis functions for time-frequency analysis and have properties that are particularly useful for the compression of analogue point on wave transient and disturbance power system signals. This paper evaluates the compression properties of the discrete wavelet transform using actual power system data. The results presented in the paper indicate that reduction ratios up to 10:1 with acceptable distortion are achievable. The paper discusses the application of the reduction method for expedient fault analysis and protection assessment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intertwining planar spirals arranged in doubly periodic arrays enables a substantially subwavelength response of the unit cell smaller than 1/40 of wavelength with large fractional bandwidths. These properties are important for application at low frequencies, conformal curved surfaces, or with compact radiators. It is shown that interleaving counter-wound spiral arms extended into adjacent unit cells dramatically increase the array equivalent capacitance while reducing the inductance. A coplanar waveguide (CPW) model has been developed to analytically estimate the equivalent capacitance and inductance of intertwined spiral array elements in terms of their geometrical parameters. The proposed CPW model is shown to provide an accurate prediction of the fundamental resonance frequency and can be instrumental in the design of the arrays for a specified frequency response. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The properties of metasurfaces comprised of interwoven conductor patterns on dielectric substrates have been examined. The significant reduction of the fundamental resonance frequency fr and expanded fractional bandwidths (FBWs) offered by the intertwined spirals and Brigid’s crosses extended beyond a single unit cell has been achieved with the aid of thin dielectric substrates. A qualitative model has been proposed and proved to adequately predict the main properties of entwined spiral arrays on dielectric substrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wavelet transforms provide basis functions for time-frequency analysis and have properties that are particularly useful for compression of analogue point on wave transient and disturbance power system signals. This paper evaluates the reduction properties of the wavelet transform using real power system data and discusses the application of the reduction method for information transfer in network communications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Periodic monitoring of structures such as bridges is necessary as their condition can deteriorate due to environmental conditions and ageing, causing the bridge to become unsafe. This monitoring - so called Structural Health Monitoring (SHM) - can give an early warning if a bridge becomes unsafe. This paper investigates an alternative wavelet-based approach for the monitoring of bridge structures which consists of the use of a vehicle fitted with accelerometers on its axles. A simplified vehicle-bridge interaction model is used in theoretical simulations to examine the effectiveness of the approach in detecting damage in the bridge. The accelerations of the vehicle are processed using a continuous wavelet transform, allowing a time-frequency analysis to be performed. This enables the identification of both the existence and location of damage from the vehicle response. Based on this analysis, a damage index is established. A parametric study is carried out to investigate the effect of parameters such as the bridge span length, vehicle speed, vehicle mass, damage level, signal noise level and road surface roughness on the accuracy of results. In addition, a laboratory experiment is carried out to validate the results of the theoretical analysis and assess the ability of the approach to detect changes in the bridge response.