66 resultados para Proportional apparent error rate
Resumo:
In this paper, we provide experimental evidence to show that enhanced bit error rate (BER) performance is possible using a retrodirective array operating in a dynamically varying multipath environment. The operation of such a system will be compared to that obtained by a conventional nonretrodirective array. The ability of the array to recover amplitude shift keyed encoded data transmitted from a remote location whose position is not known a priori is described. In addition, its ability to retransmit data inserted at the retrodirective array back to a spatially remote beacon location whose position is also not known beforehand is also demonstrated. Comparison with an equivalent conventional fixed beam antenna array utilizing an identical radiating aperture arrangement to that of the retrodirective array are given. These show that the retrodirective array can effectively exploit the presence of time varying multipath in order to give significant reductions in BER over what can be otherwise achieved. Additionally, the retrodirective system is shown to be able to deliver low BER regardless of whether line of sight is present or absent.
Resumo:
This letter investigates performance enhancement by the concept of multi-carrier index keying in orthogonal frequency division multiplexing (OFDM) systems. For the performance evaluation, a tight closed-form approximation of the bit error rate (BER) is derived introducing the expression for the number of bit errors occurring in both the index domain and the complex domain, in the presence of both imperfect and perfect detection of active multi-carrier indices. The accuracy of the derived BER results for various cases are validated using simulations, which can provide accuracy within 1 dB at favorable channels.
Resumo:
Microsatellite genotyping is a common DNA characterization technique in population, ecological and evolutionary genetics research. Since different alleles are sized relative to internal size-standards, different laboratories must calibrate and standardize allelic designations when exchanging data. This interchange of microsatellite data can often prove problematic. Here, 16 microsatellite loci were calibrated and standardized for the Atlantic salmon, Salmo salar, across 12 laboratories. Although inconsistencies were observed, particularly due to differences between migration of DNA fragments and actual allelic size ('size shifts'), inter-laboratory calibration was successful. Standardization also allowed an assessment of the degree and partitioning of genotyping error. Notably, the global allelic error rate was reduced from 0.05 ± 0.01 prior to calibration to 0.01 ± 0.002 post-calibration. Most errors were found to occur during analysis (i.e. when size-calling alleles; the mean proportion of all errors that were analytical errors across loci was 0.58 after calibration). No evidence was found of an association between the degree of error and allelic size range of a locus, number of alleles, nor repeat type, nor was there evidence that genotyping errors were more prevalent when a laboratory analyzed samples outside of the usual geographic area they encounter. The microsatellite calibration between laboratories presented here will be especially important for genetic assignment of marine-caught Atlantic salmon, enabling analysis of marine mortality, a major factor in the observed declines of this highly valued species.
Resumo:
We consider transmit antenna selection with receive generalized selection combining (TAS/GSC) for cognitive decodeand-forward (DF) relaying in Nakagami-m fading channels. In an effort to assess the performance, the probability density function and the cumulative distribution function of the endto-end SNR are derived using the moment generating function, from which new exact closed-form expressions for the outage probability and the symbol error rate are derived. We then derive a new closed-form expression for the ergodic capacity. More importantly, by deriving the asymptotic expressions for the outage probability and the symbol error rate, as well as the high SNR approximations of the ergodic capacity, we establish new design insights under the two distinct constraint scenarios: 1) proportional interference power constraint, and 2) fixed interference power constraint. Several pivotal conclusions are reached. For the first scenario, the full diversity order of the
outage probability and the symbol error rate is achieved, and the high SNR slope of the ergodic capacity is 1/2. For the second scenario, the diversity order of the outage probability and the symbol error rate is zero with error floors, and the high SNR slope of the ergodic capacity is zero with capacity ceiling.
Resumo:
Wireless enabled portable devices must operate with the highest possible energy efficiency while still maintaining a minimum level and quality of service to meet the user's expectations. The authors analyse the performance of a new pointer-based medium access control protocol that was designed to significantly improve the energy efficiency of user terminals in wireless local area networks. The new protocol, pointer controlled slot allocation and resynchronisation protocol (PCSAR), is based on the existing IEEE 802.11 point coordination function (PCF) standard. PCSAR reduces energy consumption by removing the need for power saving stations to remain awake and listen to the channel. Using OPNET, simulations were performed under symmetric channel loading conditions to compare the performance of PCSAR with the infrastructure power saving mode of IEEE 802.11, PCF-PS. The simulation results demonstrate a significant improvement in energy efficiency without significant reduction in performance when using PCSAR. For a wireless network consisting of an access point and 8 stations in power saving mode, the energy saving was up to 31% while using PCSAR instead of PCF-PS, depending upon frame error rate and load. The results also show that PCSAR offers significantly reduced uplink access delay over PCF-PS while modestly improving uplink throughput.
Resumo:
Objectives: It is increasingly important to develop predictors of treatment response and outcome in schizophrenia. Neuropsychological impairments, particularly those reflecting frontal lobe function, appear to predict poor outcome. Eye movement abnormalities probably also reflect frontal lobe deficits. We wished to see if these two aspects of schizophrenia were correlated and whether they could distinguish a treatment resistant from a treatment responsive group. Methods: Ten treatment resistant schizophrenic patients were compared with ten treatment responsive patients on three eye movement paradigms (reflexive saccades, antisaccades and smooth pursuit), clinical psychopathology (BPRS, SANS and CGI) and a neuropsychological test battery designed to detect frontal lobe dysfunction. Ten aged-matched controls also carried out the eye movement tasks. Results: Both treatment responsive (p = 0.038) and treatment resistant (p = 0.007) patients differed significantly from controls on the antisaccade task. The treatment resistant group had a higher error rate than the treatment responsive group, but the difference was not statistically significant. Similar poor neuropsychological test performance was found in both groups. Conclusions: To demonstrate the biological differences characteristic of treatment resistance, larger sample sizes and wider differences in outcome between the two groups are necessary.
Resumo:
This study highlights how heuristic evaluation as a usability evaluation method can feed into current building design practice to conform to universal design principles. It provides a definition of universal usability that is applicable to an architectural design context. It takes the seven universal design principles as a set of heuristics and applies an iterative sequence of heuristic evaluation in a shopping mall, aiming to achieve a cost-effective evaluation process. The evaluation was composed of three consecutive sessions. First, five evaluators from different professions were interviewed regarding the construction drawings in terms of universal design principles. Then, each evaluator was asked to perform the predefined task scenarios. In subsequent interviews, the evaluators were asked to re-analyze the construction drawings. The results showed that heuristic evaluation could successfully integrate universal usability into current building design practice in two ways: (i) it promoted an iterative evaluation process combined with multi-sessions rather than relying on one evaluator and on one evaluation session to find the maximum number of usability problems, and (ii) it highlighted the necessity of an interdisciplinary ad hoc committee regarding the heuristic abilities of each profession. A multi-session and interdisciplinary heuristic evaluation method can save both the project budget and the required time, while ensuring a reduced error rate for the universal usage of the built environments.
Resumo:
In this paper, a reduced-complexity soft-interference-cancellation minimum mean-square-error.(SIC-MMSE) iterative equalization method for severe time-dispersive multiple-input-multiple-output (MIMO) channels is proposed. To mitigate the severe time dispersiveness of the channel, a single carrier with cyclic prefix is employed, and the equalization is per-formed in the frequency domain. This simplifies the challenging problem of equalization in MIMO channels due to both the intersymbol interference (ISI) and the coantenna interference (CAI). The proposed iterative algorithm works in two stages. The first stage estimates the transmitted frequency-domain symbols using a low-complexity SIC-MMSE equalizer. The second stage converts the estimated frequency-domain symbols in the time domain and finds their means and variances to incorporate in the SIC-MMSE equalizer in the next iteration. Simulation results show the bit-/symbol-error-rate performance of the SIC-MMSE equalizer, with and without coding, for various modulation schemes.
Resumo:
In this letter, we show how a 2.4-GHz retrodirective array operating in a multipath rich environment can be utilized in order to spatially encrypt digital data. For the first time, we give experimental evidence that digital data that has no mathematical encryption applied to it can be successfully recovered only when it is detected with a receiver that is polarization-matched to that of a reference continuous-wave (CW) pilot tone signal. In addition, we show that successful detection with low bit error rate (BER) will only occur within a highly constrained spatial region colocated close to the position of the CW reference signal. These effects mean that the signal cannot be intercepted and its modulated data recovered at locations other than the constrained spatial region around the position from which the retrodirective communication was initiated.
Resumo:
The authors propose a three-node full diversity cooperative protocol, which allows the retransmission of all symbols. By allowing multiple nodes to transmit simultaneously, relaying transmission only consumes limited bandwidth resource. To facilitate the performance analysis of the proposed cooperative protocol, the lower and upper bounds of the outage probability are first developed, and then the high signal-to-noise ratio behaviour is studied. Our analytical results show that the proposed strategy can achieve full diversity. To achieve the performance gain promised by the cooperative diversity, at the relays decode-and-forward strategy is adopted and an iterative soft-interference-cancellation minimum mean-squared error equaliser is developed. The simulation results compare the bit-error-rate performance of the proposed protocol with the non-cooperative scheme and the scheme presented by Azarian et al. ( 2005).
Resumo:
This letter derives mathematical expressions for the received signal-to-interference-plus-noise ratio (SINR) of uplink Single Carrier (SC) Frequency Division Multiple Access (FDMA) multiuser MIMO systems. An improved frequency domain receiver algorithm is derived for the studied systems, and is shown to be significantly superior to the conventional linear MMSE based receiver in terms of SINR and bit error rate (BER) performance.
Resumo:
In this paper, we present a new approach to visual speech recognition which improves contextual modelling by combining Inter-Frame Dependent and Hidden Markov Models. This approach captures contextual information in visual speech that may be lost using a Hidden Markov Model alone. We apply contextual modelling to a large speaker independent isolated digit recognition task, and compare our approach to two commonly adopted feature based techniques for incorporating speech dynamics. Results are presented from baseline feature based systems and the combined modelling technique. We illustrate that both of these techniques achieve similar levels of performance when used independently. However significant improvements in performance can be achieved through a combination of the two. In particular we report an improvement in excess of 17% relative Word Error Rate in comparison to our best baseline system.