39 resultados para Process control -- Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new algorithm for training of nonlinear optimal neuro-controllers (in the form of the model-free, action-dependent, adaptive critic paradigm). Overcomes problems with existing stochastic backpropagation training: need for data storage, parameter shadowing and poor convergence, offering significant benefits for online applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper points out a serious flaw in dynamic multivariate statistical process control (MSPC). The principal component analysis of a linear time series model that is employed to capture auto- and cross-correlation in recorded data may produce a considerable number of variables to be analysed. To give a dynamic representation of the data (based on variable correlation) and circumvent the production of a large time-series structure, a linear state space model is used here instead. The paper demonstrates that incorporating a state space model, the number of variables to be analysed dynamically can be considerably reduced, compared to conventional dynamic MSPC techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer extrusion is a complex process and the availability of good dynamic models is key for improved system operation. Previous modelling attempts have failed adequately to capture the non-linearities of the process or prove too complex for control applications. This work presents a novel approach to the problem by the modelling of extrusion viscosity and pressure, adopting a grey box modelling technique that combines mechanistic knowledge with empirical data using a genetic algorithm approach. The models are shown to outperform those of a much higher order generated by a conventional black box technique while providing insight into the underlying processes at work within the extruder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-islanding protection is becoming increasingly important due to the rapid installation of distributed generation from renewable resources like wind, tidal and wave, solar PV, bio-fuels, as well as from other resources like diesel. Unintentional islanding presents a potential risk for damaging utility plants and equipment connected from the demand side, as well as to public and personnel in utility plants. This paper investigates automatic islanding detection. This is achieved by deploying a statistical process control approach for fault detection with the real-time data acquired through a wide area measurement system, which is based on Phasor Measurement Unit (PMU) technology. In particular, the principal component analysis (PCA) is used to project the data into principal component subspace and residual space, and two statistics are used to detect the occurrence of fault. Then a fault reconstruction method is used to identify the fault and its development over time. The proposed scheme has been used in a real system and the results have confirmed that the proposed method can correctly identify the fault and islanding site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key Performance Indicators (KPIs) and their predictions are widely used by the enterprises for informed decision making. Nevertheless , a very important factor, which is generally overlooked, is that the top level strategic KPIs are actually driven by the operational level business processes. These two domains are, however, mostly segregated and analysed in silos with different Business Intelligence solutions. In this paper, we are proposing an approach for advanced Business Simulations, which converges the two domains by utilising process execution & business data, and concepts from Business Dynamics (BD) and Business Ontologies, to promote better system understanding and detailed KPI predictions. Our approach incorporates the automated creation of Causal Loop Diagrams, thus empowering the analyst to critically examine the complex dependencies hidden in the massive amounts of available enterprise data. We have further evaluated our proposed approach in the context of a retail use-case that involved verification of the automatically generated causal models by a domain expert.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How does participation in collective activity affect our social identifications and behavior? We investigate this question in a longitudinal questionnaire study conducted at one of the world’s largest collective events – the Magh Mela (a month-long Hindu religious festival in north India). Data gathered from pilgrims and comparable others who did not attend the event show that one month after this mass gathering was over, those who had participated (but not controls) exhibited a heightened social identification as Hindu and increased levels of religious activity (e.g., performing prayer rituals). Additional data gathered from the pilgrim respondents during the festival show that the pilgrims’ perceptions of sharing a common identity with other pilgrims, and of being able to enact their social identity in this event, predicted these outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoforming processes generally employ sheet temperature monitoring as the primary means of process control. In this paper the development of an alternative system that monitors plug force is described. Tests using a prototype device have shown that the force record over a forming cycle creates a unique map of the process operation. Key process features such as the sheet modulus, sheet sag and the timing of the process stages may be readily observed, and the effects of changes in all of the major processing parameters are easily distinguished. Continuous, cycle-to-cycle tests show that the output is consistent and repeatable over a longer time frame, providing the opportunity for development of an on-line process control system. Further testing of the system is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other schemes employed. (c) 2004 Elsevier Ltd. All rights reserved.