72 resultados para Plastic laminates
Resumo:
A study of the K-alpha radiation emitted from Ti foils irradiated with intense, similar to0.2 J, 67 fs, 800 nm laser pulses, scanning a range of intensities (similar to10(15)-10(18) W cm(-2)), is reported. The brightness of single-shot K-alpha line emission from the front of the targets is recorded. The yield from bare titanium (Ti) is compared to that from plastic (parylene-E) coated Ti. It is demonstrated that, for a defocused beam, a thin layer of plastic increases the yield.
Resumo:
We have performed short-pulse x-ray scattering measurements on laser-driven shock-compressed plastic samples in the warm dense matter regime, providing instantaneous snapshots of the system evolution. Time-resolved and angularly resolved scattered spectra sensitive to the correlation effects in the plasma show the appearance of short-range order within a few interionic separations. Comparison with radiation-hydrodynamic simulations indicates that the shocked plastic is compressed with a temperature of a few electron volts. These results are important for the understanding of the thermodynamic behavior of strongly correlated matter for conditions relevant to both laboratory astrophysics and inertial confinement fusion research.
Resumo:
The use of self-compacting concrete (SCC) facilitates the placing of concrete by eliminating the need for compaction by vibration. Given the highly flowable nature of such concrete, care is required to ensure excellent filling ability and adequate stability. This is especially important in deep structural members and wall elements where concrete can block the flow, segregate and exhibit bleeding and settlement which can result in local defects that can reduce mechanical properties, durability and quality of surface finish. This paper shows results of an investigation of fresh properties of self-compacting concrete, such as filling ability measured by slump flow and flow time (measured by Orimet) and plastic fresh settlement measured in a column. The SCC mixes incorporated various combinations of fine inorganic powders and admixtures. The slump flow of all SCCs was greater than 580 mm and the time in which the slumping concrete reached 500 rnm was less than 3 s. The flow time was less than 5 s. The results on SCCs were compared to a control mix. The compressive strength and splitting tensile strength of SCCs were also measured. The effects of water/powder ratio, slump and nature of the sand on the fresh settlement were also evaluated. The volume of coarse aggregate and the dosage of superphsticizer were kept constant. It can be concluded that the settlement of fresh self-compacting concrete increased with the increase in water/powder ratio and slump. The nature of sand influenced the maximum settlement.
Resumo:
Index properties such as the liquid limit and plastic limit are widely used to evaluate certain geotechnical parameters of fine-grained soils. Measurement of the liquid limit is a mechanical process, and the possibility of errors occurring during measurement is not significant. However, this is not the case for plastic limit testing, despite the fact that the current method of measurement is embraced by many standards around the world. The method in question relies on a fairly crude procedure known widely as the ‘thread rolling' test, though it has been the subject of much criticism in recent years. It is essential that a new, more reliable method of measuring the plastic limit is developed using a mechanical process that is both consistent and easily reproducible. The work reported in this paper concerns the development of a new device to measure the plastic limit, based on the existing falling cone apparatus. The force required for the test is equivalent to the application of a 54 N fast-static load acting on the existing cone used in liquid limit measurements. The test is complete when the relevant water content of the soil specimen allows the cone to achieve a penetration of 20 mm. The new technique was used to measure the plastic limit of 16 different clays from around the world. The plastic limit measured using the new method identified reasonably well the water content at which the soil phase changes from the plastic to the semi-solid state. Further evaluation was undertaken by conducting plastic limit tests using the new method on selected samples and comparing the results with values reported by local site investigation laboratories. Again, reasonable agreement was found.