152 resultados para PULMONARY-HYPERTENSION
Resumo:
The hypoxia-inducible factors (HIFs; isoforms HIF-1 alpha, HIF-2 alpha, HIF-3 alpha) mediate many responses to hypoxia. Their regulation is principally by oxygen-dependent degradation, which is initiated by hydroxylation of specific proline residues followed by binding of von Hippel-Lindau (VHL) protein. Chuvash polycythemia is a disorder with elevated HIF. It arises through germline homozygosity for hypomorphic VHL alleles and has a phenotype of hematological, cardiopulmonary, and metabolic abnormalities. This study explores the phenotype of two other HIF pathway diseases: classic VHL disease and HIF-2 alpha gain-of-function mutation. No cardiopulmonary abnormalities were detected in classic VHL disease. HIF-2 alpha gain-of-function mutations were associated with pulmonary hypertension, increased cardiac output, increased heart rate, and increased pulmonary ventilation relative to metabolism. Comparison of the HIF-2 alpha gain-of-function responses with data from studies of Chuvash polycythemia suggested that other aspects of the Chuvash phenotype were diminished or absent. In classic VHL disease, patients are germline heterozygous for mutations in VHL, and the present results suggest that a single wild-type allele for VHL is sufficient to maintain normal cardiopulmonary function. The HIF-2 alpha gain-of-function phenotype may be more limited than the Chuvash phenotype either because HIF-1 alpha is not elevated in the former condition, or because other HIF-independent functions of VHL are perturbed in Chuvash polycythemia.-Formenti, F., Beer, P. A., Croft, Q. P. P., Dorrington, K. L., Gale, D. P., Lappin, T. R. J., Lucas, G. S., Maher, E. R., Maxwell, P. H., McMullin, M. F., O'Connor, D. F., Percy, M. J., Pugh, C. W., Ratcliffe, P. J., Smith, T. G., Talbot, N. P., Robbins, P. A. Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel-Lindau disease and HIF-2 alpha gain-of-function mutation. FASEB J. 25, 2001-2011 (2011). www.fasebj.org
Resumo:
Intravascular application of goat anti-rabbit immunoglobulin E (IgE) was used to stimulate parenchymal mast cells in situ in perfused rabbit lungs. Sustained pulmonary arterial pressure rise was evoked in the absence of lung vascular permeability increase and lung edema formation. Early prostaglandin (PG) D2 and histamine release into the perfusate was documented, accompanied by more sustained liberation of cysteinyl leukotrienes (LT), LTB4, and PGI2. The quantities of these inflammatory mediators displayed the following order: histamine > cysteinyl-LT > PGI2 > LTB4 > PGD2. Pressor response and inflammatory mediator release revealed corresponding bell-shaped dose dependencies. Cyclooxygenase inhibition (acetylsalicylic acid) suppressed prostanoid generation, increased LT release, and did not substantially affect pressor response and histamine liberation. BW755 C, a cyclo- and lipoxygenase inhibitor, blocked the release of cysteinyl-LT and markedly reduced the liberation of the other inflammatory mediators as well as the pressor response. The H-1-antagonist clemastine caused a moderate reduction of the anti-IgE-provoked pressure rise. We conclude that intravascular anti-IgE challenge in intact lungs provokes the release of an inflammatory mediator profile compatible with in situ lung parenchymal mast cell activation. Pulmonary hypertension represents the predominant vascular response, presumably mediated by cysteinyl-LT and, to a minor extent, histamine liberation.
Resumo:
Selective polypharmacology, where a drug acts on multiple rather than single molecular targets involved in a disease, emerges to develop a structure-based system biology approach to design drugs selectively targeting a disease-active protein network. We focus on the bioaminergic receptors that belong to the group of integral membrane signalling proteins coupled to the G protein and represent targets for therapeutic agents against schizophrenia and depression. Among them, it has been shown that the serotonin (5-HT2A and 5-HT6), dopamine (D2 and D3) receptors induce a cognition-enhancing effect (group 1), while the histamine (H1) and serotonin (5-HT2C) receptors lead to metabolic side effects and the 5-HT2B serotonin receptor causes pulmonary hypertension (group 2). Thus, the problem arises to develop an approach that allows identifying drugs targeting only the disease-active receptors, i.e. group 1. The recent release of several crystal structures of the bioaminergic receptors, involving the D3 and H1 receptors provides the possibility to model the structures of all receptors and initiate a study of the structural and dynamic context of selective polypharmacology. In this work, we use molecular dynamics simulations to generate a conformational space of the receptors and subsequently characterize its binding properties applying molecular probe mapping. All-against-all comparison of the generated probe maps of the selected diverse conformations of all receptors with the Tanimoto similarity coefficient (Tc) enable to separate the receptors of group 1 from group 2. The pharmacophore built based on the Tc-selected receptor conformations, using the multiple probe maps discovers structural features that can be used to design molecules selective towards the receptors of group 1. The importance of several predicted residues to ligand selectivity is supported by the available mutagenesis and ligand structure-activity relationships studies. In addition, the Tc-selected conformations of the receptors for group 1 show good performance in isolation of known ligands from a random decoy. Our computational structure-based protocol to tackle selective polypharmacology of antipsychotic drugs could be applied for other diseases involving multiple drug targets, such as oncologic and infectious disorders.
Resumo:
AIMS: Rheumatic heart disease (RHD) accounts for over a million premature deaths annually; however, there is little contemporary information on presentation, complications, and treatment.
METHODS AND RESULTS: This prospective registry enrolled 3343 patients (median age 28 years, 66.2% female) presenting with RHD at 25 hospitals in 12 African countries, India, and Yemen between January 2010 and November 2012. The majority (63.9%) had moderate-to-severe multivalvular disease complicated by congestive heart failure (33.4%), pulmonary hypertension (28.8%), atrial fibrillation (AF) (21.8%), stroke (7.1%), infective endocarditis (4%), and major bleeding (2.7%). One-quarter of adults and 5.3% of children had decreased left ventricular (LV) systolic function; 23% of adults and 14.1% of children had dilated LVs. Fifty-five percent (n = 1761) of patients were on secondary antibiotic prophylaxis. Oral anti-coagulants were prescribed in 69.5% (n = 946) of patients with mechanical valves (n = 501), AF (n = 397), and high-risk mitral stenosis in sinus rhythm (n = 48). However, only 28.3% (n = 269) had a therapeutic international normalized ratio. Among 1825 women of childbearing age (12-51 years), only 3.6% (n = 65) were on contraception. The utilization of valvuloplasty and valve surgery was higher in upper-middle compared with lower-income countries.
CONCLUSION: Rheumatic heart disease patients were young, predominantly female, and had high prevalence of major cardiovascular complications. There is suboptimal utilization of secondary antibiotic prophylaxis, oral anti-coagulation, and contraception, and variations in the use of percutaneous and surgical interventions by country income level.