88 resultados para Nitrogen-fixing microorganisms
Resumo:
A survey of the utilization by environmental micro-organisms of a range of compounds containing the carbon-phosphorus (C-P) bond was carried out. Elective culture studies indicated that 15 of 19 alkylphosphonates tested served only as a sole source of phosphorus for microbial growth. Their metabolism did not lead to the extracellular release of inorganic phosphate. However, four organophosphonates - phosphonoacetate, phosphonoalanine, 2-aminoethylphosphonate and phosphonomycin - supported microbial growth when supplied as either a phosphorus source or as a carbon and energy source, with near-quantitative inorganic phosphate release. Four of five amino alkylphosphonates tested were also utilized as a nitrogen source in the presence of 1 mmol l(-1) inorganic phosphate. In a subsequent screening programme, 99% of bacterial isolates tested were able to utilize 2-aminoethylphosphonate as a sole phosphorus source, 61% as a nitrogen source, 10% as a source of nitrogen and phosphorus, and 2% as a source of carbon, nitrogen and phosphorus; 2% of isolates used phosphonoalanine as a nitrogen source. These results suggest that the uptake and metabolism of organophosphonates by bacteria is less 'tightly' regulated by phosphorus starvation than has previously been supposed.
Resumo:
A series of 2-, 3- and 4-substituted pyridines was metabolised using the mutant soil bacterium Pseudomonas putida UV4 which contains a toluene dioxygenase (TDO) enzyme. The regioselectivity of the biotransformation in each case was determined by the position of the substituent. 4-Alkylpyridines were hydroxylated exclusively on the ring to give the corresponding 4-substituted 3-hydroxypyridines, while 3-alkylpyridines were hydroxylated stereoselectively on C-1 of the alkyl group with no evidence of ring hydroxylation. 2-Alkylpyridines gave both ring and side-chain hydroxylation products. Choro- and bromo-substituted pyridines, and pyridine itself, while being poor substrates for P. putida UV4, were converted to some extent to the corresponding 3-hydroxypyridines. These unoptimised biotransformations are rare examples of the direct enzyme-catalysed oxidation of pyridine rings and provide a novel synthetic method for the preparation of substituted pyridinols. Evidence for the involvement of the same TDO enzyme in both ring and side-chain hydroxylation pathways was obtained using a recombinant strain of Escherichia coli (pKST11) containing a cloned gene for TDO. The observed stereoselectivity of the side-chain hydroxylation process in P. putida UV4 was complicated by the action of an alcohol dehydrogenase enzyme in the organism which slowly leads to epimerisation of the initial (R)-alcohol bioproducts by dehydrogenation to the corresponding ketones followed by stereoselective reduction to the (S)-alcohols.