47 resultados para Nerves.
Resumo:
OBJECTIVE: To identify interstitial cells (ICs) in the wall of the rabbit urethra using antibodies to the Kit receptor, and to examine their location, morphology and relationship with nerves and smooth muscle cells (SMCs), as studies of enzymatically isolated cells from the rabbit urethra have established that there are specialized cells that show spontaneous electrical activity and have morphological properties of ICs. MATERIALS AND METHODS: Urethral tissues from rabbits were fixed, labelled with antibodies and examined with confocal microscopy. Some specimens were embedded in paraffin wax and processed for histology. Histological sections from the most proximal third and mid-third region of rabbit urethra were stained with Masson's Trichrome to show their cellular arrangement. RESULTS: Sections from both regions had outer longitudinal and inner circular layers of SM, and a lamina propria containing connective tissue and blood vessels; the lumen was lined with urothelial cells. The mid-third region had a more developed circular SM layer than the most-proximal samples, and had extensive inner longitudinal SM bundles in the lamina propria. Labelling with anti-Kit revealed immunopositive cells within the wall of the rabbit urethra, in the circular and longitudinal layers of the muscularis. Double-labelling with an antibody to SM myosin showed Kit-positive cells on the boundary of the SM bundles, orientated parallel to the axis of the bundles. Others were in spaces between the bundles and often made contact with each other. Kit-positive cells were either elongated, with several lateral branches, or stellate with branches coming from a central soma. Similar cells could be labelled with vimentin antibodies. Their relationship with intramural nerves was examined by double immunostaining with an anti-neurofilament antibody. There were frequent points of contact between Kit-positive cells and nerves, with similar findings in specimens double-immunostained with anti-neuronal nitric oxide synthase (nNOS). CONCLUSION: Kit-positive ICs were found within the SM layers of the rabbit urethra, in association with nerves, on the edge of SM bundles and in the interbundle spaces. The contact with nNOS-containing neurones might imply participation in the nitrergic inhibitory neurotransmission of the urethra. PMID: 17212607 [PubMed - indexed for MEDLINE]
Resumo:
The measurement and representation of the electrical activity of muscles [electromyography (EMG)] have a long history from the Victorian Era until today. Currently, EMG has uses both as a research tool, in noninvasively recording muscle activation, and clinically in the diagnosis and assessment of nerve and muscle disease and injury as well as in assessing the recovery of neuromuscular function after nerve damage. In the present report, we describe the use of a basic EMG setup in our teaching laboratories to demonstrate some of these current applications. Our practical also illustrates some fundamental physiological and structural properties of nerves and muscles. Learning activities include 1) displaying the recruitment of muscle fibers with increasing force development; 2) the measurement of conduction velocity of motor nerves; 3) the assessment of reflex delay and demonstration of Jendrassik's maneuver; and 4) a Hoffman reflex experiment that illustrates the composition of mixed nerves and the differential excitability thresholds of fibers within the same nerve, thus aiding an understanding of the reflex nature of muscle control. We can set up the classes at various levels of inquiry depending on the needs/professional requirements of the class. The results can then provide an ideal platform for a discovery learning session/tutorial on how the central nervous system controls muscles, giving insights on how supraspinal control interacts with reflexes to give smooth, precise muscular activation.
Resumo:
During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances.
Resumo:
Background: The oro-facial region is densely innervated by the trigeminal nerve, which when stimulated can induce noxious pain sensation and contribute to neurogenic inflammation in local tissues. Recent research on the expression of specialised ion channels on the trigeminal nerve has highlighted the need to undertake more extensive studies on ion channel expression/functionality with the aim of elucidating their role in pain sensations. A major family of such ion channels is the transient receptor potential (TRP) channels which are activated by a wide variety of thermal, mechanical or chemical stimuli and merit investigation as possible druggable targets for future analgesics.
Objective: Study of TRP channel expression and regulation in oro-facial tissues is hindered by the fact that the cell bodies of neurons innervating these tissues are located in the trigeminal ganglion. Using dental pulp stem cells differentiated towards peripheral neuronal equivalents (PNEs), we sought to determine TRP channel expression, functionality and potential modulation by cytokines in this novel model.
Method: Dental pulp stem cells (DPSCs) were grown on substrate-coated tissue culture plates and differentiated towards a neuronal phenotype using neuronal induction media. Quantitative polymerase chain reaction (qPCR) was performed on PNEs +/-cytokine treatment. Ion channel functionality was investigated using whole cell patch clamping.
Result: qPCR analysis showed that PNEs expressed the TRP channels TRPA1, TRPV1, TRPV4 and TRPM8. TRPA1 was the most abundantly expressed TRP channel studied whereas TRPM8 was lowly expressed. TRP channel expression was shown to be regulated by treatment with inflammatory cytokines. Patch clamp studies using specific agonists and antagonists for TRPA1 and TRPV1 showed these channels were functional.
Conclusion: PNEs differentiated from DPSCs provide a suitable model for TRP channel expression, regulation, and sensistisation in oro-facial tissues. This human neuronal model has potential for use in pre-clinical studies of novel analgesics.
Resumo:
Many neuropeptide transmitters require the presence of a carboxy-terminal alpha-amide group for biological activity. Amidation requires conversion of a glycine-extended peptide intermediate into a C-terminally amidated product. This post-translational modification depends on the sequential action of two enzymes (peptidylglycine alpha-hydroxylating monooxygenase or PHM, and peptidyl-alpha-hydroxyglycine alpha-amidating lyase or PAL) that in most eukaryotes are expressed as separate domains of a single protein (peptidylglycine alpha-amidating monooxygenase or PAM). We identified a cDNA encoding PHM in the human parasite Schistosoma mansoni. Transient expression of schistosome PHM (smPHM) revealed functional properties that are different from other PHM proteins; smPHM displays a lower pH-optimum and, when expressed in mammalian cells, is heavily N-glycosylated. In adult worms, PHM is found in the trans-Golgi network and secretory vesicles of both central and peripheral nerves. The widespread occurrence of PHM in the nervous system confirms the important role of amidated neuropeptides in these parasitic flatworms. The differences between schistosome and mammalian PHM suggest that it could be a target for new chemotherapeutics.
Resumo:
Scientists interested in the smooth muscles of the urinary tract, and their control, have recently been studying cells in the interstitium of tissues that express the c-kit antigen (Kit(+) cells). These cells have morphologic features that are reminiscent of the well-described pacemaker cells in the gut, the interstitial cells of Cajal (ICC). The spontaneous contractile behavior of muscles in the urinary tract varies widely, and it is clear that urinary tract Kit(+) interstitial cells cannot be playing an identical role to that played by the ICC in the gut. Nevertheless, there is increasing evidence that they do play a role in modulating the contractile behavior of adjacent smooth muscle, and might also be involved in mediating neural control. This review outlines the properties of ICC in the gut, and gives an account of the discovery of cells in the interstitium of the main components of the urinary tract. The physiologic properties of such cells and the functional implications of their presence are discussed, with particular reference to the bladder. In this organ, Kit(+) cells are found under the lamina propria, where they might interact with the urothelium and with sensory nerves, and also between and within the smooth-muscle bundles. Confocal microscopy and calcium imaging are being used to assess the physiology of ICC and their interactions with smooth muscles. Differences in the numbers of ICC are seen in smooth muscle specimens obtained from patients with various pathologies; in particular, bladder overactivity is associated with increased numbers of these cells.
Resumo:
PURPOSE: In the current study we examined the location of interstitial cell of Cajal (ICC)-like cells in the guinea pig bladder wall and studied their structural interactions with nerves and smooth muscle cells. MATERIALS AND METHODS: Whole mount samples and cryosections of bladder tissue were labeled with primary and fluorescent secondary antibodies, and imaged using confocal and multiphoton microscopy. RESULTS: Kit positive ICC-like cells were located below the urothelium, in the lamina propria region and throughout the detrusor. In the suburothelium they had a stellate morphology and appeared to network. They made connections with nerves, as shown by double labeling experiments with anti-kit and anti-protein gene product 9.5. A network of vimentin positive cells was also found, of which many but not all were kit positive. In the detrusor kit positive cells were most often seen at the edge of smooth muscle bundles. They were elongated with lateral branches, running in parallel with the bundles and closely associated with intramural nerves. Another population of kit positive cells was seen in the detrusor between muscle bundles. These cells had a more stellate-like morphology and made connections with each other. Kit positive cells were seen tracking nerve bundles and close to intramural ganglia. Vimentin positive cells were present in the detrusor, of which some were also kit positive. CONCLUSIONS: There are several populations of ICC-like cells throughout the guinea pig bladder wall. They differ in morphology and orientation but all make connections with intramural nerves and in the detrusor they are closely associated with smooth muscle cells.
Resumo:
PURPOSE: We describe the presence of interstitial cells of Cajal (ICC) throughout the wall of the guinea pig bladder. MATERIALS AND METHODS: Bladders obtained from male guinea pigs were prepared for immunohistochemical investigations using various primary antibodies, including the specific ICC marker c-kit (Gibco BRL, Grand Island, New York). Enzymatically dispersed cells with a branched morphology were identified as ICC using anti-c-kit. They were loaded with fluo-4acetoxymethyl (Molecular Probes, Eugene, Oregon) and studied using confocal laser scanning microscopy. RESULTS: Anti-c-kit labeling demonstrated that ICC were oriented in parallel with the smooth muscle bundles that run diagonally throughout the bladder. Double labeling with anti-smooth muscle myosin (Sigma Chemical Co., St. Louis, Missouri) revealed that ICC were located on the boundary of smooth muscle bundles. When anti-c-kit was used in combination with the general neuronal antibody protein gene product 9.5 (Ultraclone Ltd., Isle of Wight, United Kingdom) or anti-neuronal nitric oxide synthase, it was noted that there was a close association between nerves and ICC. Enzymatic dissociation of cells from tissue pieces yielded a heterogeneous population of cells containing typical spindle-shaped smooth muscle cells and branched cells resembling ICC from other preparations. The latter could be identified immunohistochemically as ICC using anti-c-kit, whereas the majority of spindle-shaped cells were not Kit positive. Branched cells responded to the application of carbachol by firing Ca2+ waves and they were often spontaneously active. CONCLUSIONS: ICC are located on the boundary of smooth muscle bundles in the guinea pig bladder. They fire Ca2+ waves in response to cholinergic stimulation and can be spontaneously active, suggesting that they could act as pacemakers or intermediaries in the transmission of nerve signals to smooth muscle cells.
Resumo:
To assess 3-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) techniques to see whether doses to critical structures could be reduced while maintaining planning target volume (PTV) coverage in patients receiving conventional radiotherapy (RT) for carcinoma of the maxillary sinus because of the risk of radiation-induced complications, particularly visual loss. Six patients who had recently received conventional RT for carcinoma of the maxillary sinus were studied. Conventional RT, 3D-CRT, and step-and-shoot IMRT plans were prepared using the same 2-field arrangement. The effect of reducing the number of segments in the IMRT beams was investigated. 3D-CRT and IMRT reduced the brain and ipsilateral parotid gland doses compared with the conventional plans. IMRT reduced doses to both optic nerves; for the contralateral optic nerve, 15-segment IMRT plans delivered an average maximal dose of 56.4 Gy (range 53.9–59.3) compared with 65.7 Gy (range 65.3–65.9) and 64.2 Gy (range 61.4–65.6) for conventional RT and 3D-CRT, respectively. IMRT also gave improved PTV homogeneity and improved coverage, with an average of 8.5% (range 7.0–11.7%) of the volume receiving
Resumo:
Acetylcholine released from parasympathetic excitatory nerves activates contraction in detrusor smooth muscle. Immunohistochemical labeling of guinea pig detrusor with anti-c-Kit and anti-VAChT demonstrated a close structural relationship between interstitial cells of Cajal (ICC) and cholinergic nerves. The ability of guinea pig bladder detrusor ICC to respond to the acetylcholine analog, carbachol, was investigated in enzymatically dissociated cells, loaded with the Ca(2+) indicator fluo 4AM. ICC fired Ca(2+) transients in response to stimulation by carbachol (1/10 microM). Their pharmacology was consistent with carbachol-induced contractions in strips of detrusor which were inhibited by 4-DAMP (1 microM), an M(3) receptor antagonist, but not by the M(2) receptor antagonist methoctramine (1 microM). The source of Ca(2+) underlying the carbachol transients in isolated ICC was investigated using agents to interfere with influx or release from intracellular stores. Nifedipine (1 microM) or Ni(2+) (30-100 microM) to block Ca(2+) channels or the removal of external Ca(2+) reduced the amplitude of the carbachol transients. Application of ryanodine (30 microM) or tetracaine (100 microM) abolished the transients. The phospholipase C inhibitor, U-73122 (2.5 microM), significantly reduced the responses. 2-Aminoethoxydiethylborate (30 microM) caused a significant reduction and Xestospongin C (1 microM) was more effective, almost abolishing the responses. Intact in situ preparations of guinea pig bladder loaded with a Ca(2+) indicator showed distinctively different patterns of spontaneous Ca(2+) events in smooth muscle cells and ICC. Both cell types responded to carbachol by an increase in frequency of these events. In conclusion, guinea pig bladder detrusor ICC, both as isolated cells and within whole tissue preparations, respond to cholinergic stimulation by firing Ca(2+) transients. PMID: 18171995 [PubMed - indexed for MEDLINE]
Resumo:
PURPOSE: We investigated the 3-dimensional morphological arrangement of KIT positive interstitial cells of Cajal in the human bladder and explored their structural interactions with neighboring cells.MATERIALS AND METHODS: Human bladder biopsy samples were prepared for immunohistochemistry/confocal or transmission electron microscopy.RESULTS: Whole mount, flat sheet preparations labeled with anti-KIT (Merck, Darmstadt, Germany) contained several immunopositive interstitial cell of Cajal populations. A network of stellate interstitial cells of Cajal in the lamina propria made structural connections with a cholinergic nerve plexus. Vimentin positive cells of several morphologies were present in the lamina propria, presumably including fibroblasts, interstitial cells of Cajal and other cells of mesenchymal origin. Microvessels were abundant in this region and branched, elongated KIT positive interstitial cells of Cajal were found discretely along the vessel axis with each perivascular interstitial cell of Cajal associated with at least 6 vascular smooth muscle cells. Detrusor interstitial cells of Cajal were spindle-shaped, branched cells tracking the smooth muscle bundles, closely associated with smooth muscle cells and vesicular acetylcholine transferase nerves. Rounded, nonbranched KIT positive cells were more numerous in the lamina propria than in the detrusor and were immunopositive for anti-mast cell tryptase. Transmission electron microscopy revealed cells with the ultrastructural characteristics of interstitial cells of Cajal throughout the human bladder wall.CONCLUSIONS: The human bladder contains a network of KIT positive interstitial cells of Cajal in the lamina propria, which make frequent connections with a cholinergic nerve plexus. Novel perivascular interstitial cells of Cajal were discovered close to vascular smooth muscle cells, suggesting interstitial cells of Cajal-vascular coupling in the bladder. KIT positive detrusor interstitial cells of Cajal tracked smooth muscle bundles and were associated with nerves, perhaps showing a functional tri-unit controlling bladder contractility.
Resumo:
Aims: This review summarizes the currently available literature on the localization and proposed functions of a novel group of cells in the urinary bladder known as interstitial cells or interstitial cells of Cajal (ICC).
Methods: On-line searches of "Pubmed" for bladder, c-Kit, ICC, interstitial cell and myofibroblast were performed to identify relevant studies for the review.
Results: The literature contains substantial data that several sub-populations of ICC are present in the wall of the mammalian urinary bladder. These are located in the lamina propria and within the detrusor with distinctive cell shapes and morphological arrangements. Bladder ICC are identified with transmission electron microscopy or by immunohistochemical labeling using antibodies to the Kit receptor which is an established ICC marker. Lamina propria-ICC form a loose network connected via Cx43 gap junctions and are associated with mucosal nerves. Detrusor ICC track the smooth muscle bundles and make frequent contacts with intramural nerves. Both groups of ICC exhibit spontaneous electrical and Ca2+-signalling and also respond to application of neurotransmitter substances including ATP and carbachol. There is emerging evidence that the expression of ICC is upregulated in pathophysiological conditions including the overactive bladder.
Conclusions: There is now a convincing body of evidence that specialized ICC are present in the urinary bladder making important associations with other cells that make up the bladder wall and possessing physiological properties consistent with a role of bladder activity modulation. Neurourol. Urodynam. 29: 82–87, 2010. © 2009 Wiley-Liss, Inc.