111 resultados para National Cancer Institute (U.S.). Viral Oncology Program
Resumo:
Background: Human papillomavirus (HPV), the causal agent of cervical cancer, appears to be involved in the etiology of cancer of the oral cavity and oropharynx. To investigate these associations, we conducted a multicenter case-control study of cancer of the oral cavity and oropharynx in nine countries. Methods: We recruited 1670 case patients (1415 with cancer of the oral cavity and 255 with cancer of the oropharynx) and 1732 control subjects and obtained an interview, oral exfoliated cells, and blood from all participants and fresh biopsy specimens from case patients. HPV DNA was detected by polymerase chain reaction (PCR). Antibodies against HPV16 L1, E6, and E7 proteins in plasma were detected with enzyme-linked immunosorbent assays. Multivariable models were used for case-control and case-case comparisons. Results: HPV DNA was detected in biopsy specimens of 3.9% (95% confidence interval [CI]=2.5% to 5.3%) of 766 cancers of the oral cavity with valid PCR results and 18.3% (95% CI=12.0% to 24.7%) of 142 cancers of the oropharynx (oropharynx and tonsil combined) with valid PCR results. HPV DNA in cancer biopsy specimens was detected less frequently among tobacco smokers and paan chewers and more frequently among subjects who reported more than one sexual partner or who practiced oral sex. HPV16 DNA was found in 94.7% of HPV DNA-positive case patients. HPV DNA in exfoliated cells was not associated with cancer risk or with HPV DNA detection in biopsy specimens. Antibodies against HPV16 L1 were associated with risk for cancers of the oral cavity (odds ratio [OR]=1.5, 95% CI=1.1 to 2.1) and the oropharynx (OR=3.5, 95% CI=2.1 to 5.9). Antibodies against HPV16 E6 or E7 were also associated with risk for cancers of the oral cavity (OR=2.9, 95% CI=1.7 to 4.8) and the oropharynx (OR=9.2, 95% CI=4.8 to 17.7). Conclusions: HPV appears to play an etiologic role in many cancers of the oropharynx and possibly a small subgroup of cancers of the oral cavity. The most common HPV type in genital cancers (HPV16) was also the most common in these tumors. The mechanism of transmission of HPV to the oral cavity warrants further investigation.
Resumo:
BackgroundRas-related nuclear protein (Ran) is required for cancer cell survival in vitro and human cancer progression, but the molecular mechanisms are largely unknown.MethodsWe investigated the effect of the v-myc myelocytomatosis viral oncogene homolog (Myc) on Ran expression by Western blot, chromatin immunoprecipitation, and luciferase reporter assays and the effects of Myc and Ran expression in cancer cells by soft-agar, cell adhesion, and invasion assays. The correlation between Myc and Ran and the association with patient survival were investigated in 14 independent patient cohorts (n = 2430) and analyzed with Spearman's rank correlation and Kaplan-Meier plots coupled with Wilcoxon-Gehan tests, respectively. All statistical tests were two-sided.ResultsMyc binds to the upstream sequence of Ran and transactivates Ran promoter activity. Overexpression of Myc upregulates Ran expression, whereas knockdown of Myc downregulates Ran expression. Myc or Ran overexpression in breast cancer cells is associated with cancer progression and metastasis. Knockdown of Ran reverses the effect induced by Myc overexpression in breast cancer cells. In clinical data, a positive association between Myc and Ran expression was revealed in 288 breast cancer and 102 lung cancer specimens. Moreover, Ran expression levels differentiate better or poorer survival in Myc overexpressing breast (?(2) = 24.1; relative risk [RR] = 9.1, 95% confidence interval [CI] = 3.3 to 24.7, P <.001) and lung (?(2) = 6.04; RR = 2.8, 95% CI = 1.2 to 6.3; P = .01) cancer cohorts.ConclusionsOur results suggest that Ran is required for and is a potential therapeutic target of Myc-driven cancer progression in both breast and lung cancers.
Resumo:
Background: Evidence for non-steroidal anti-inflammatory drugs (NSAIDs) preventing head and neck cancer (HNC) is inconclusive; however, there is some suggestion that aspirin may exert a protective effect.
Methods: Using data from the United States National Cancer Institute Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial, we examined the association between aspirin and ibuprofen use and HNC.
Results: Regular aspirin use was associated with a significant 22% reduction in HNC risk. No association was observed with regular ibuprofen use.
Conclusion: Aspirin may have potential as a chemopreventive agent for HNC, but further investigation is warranted.
Resumo:
Background: There is no method routinely used to predict response to anthracycline and cyclophosphamide–based chemotherapy in the clinic; therefore patients often receive treatment for breast cancer with no benefit. Loss of the Fanconi anemia/BRCA (FA/BRCA) DNA damage response (DDR) pathway occurs in approximately 25% of breast cancer patients through several mechanisms and results in sensitization to DNA-damaging agents. The aim of this study was to develop an assay to detect DDR-deficient tumors associated with loss of the FA/BRCA pathway, for the purpose of treatment selection.
Methods: DNA microarray data from 21 FA patients and 11 control subjects were analyzed to identify genetic processes associated with a deficiency in DDR. Unsupervised hierarchical clustering was then performed using 60 BRCA1/2 mutant and 47 sporadic tumor samples, and a molecular subgroup was identified that was defined by the molecular processes represented within FA patients. A 44-gene microarray-based assay (the DDR deficiency assay) was developed to prospectively identify this subgroup from formalin-fixed, paraffin-embedded samples. All statistical tests were two-sided.
Results: In a publicly available independent cohort of 203 patients, the assay predicted complete pathologic response vs residual disease after neoadjuvant DNA-damaging chemotherapy (5-fluorouracil, anthracycline, and cyclophosphamide) with an odds ratio of 3.96 (95% confidence interval [Cl] =1.67 to 9.41; P = .002). In a new independent cohort of 191 breast cancer patients treated with adjuvant 5-fluorouracil, epirubicin, and cyclophosphamide, a positive assay result predicted 5-year relapse-free survival with a hazard ratio of 0.37 (95% Cl = 0.15 to 0.88; P = .03) compared with the assay negative population.
Conclusions: A formalin-fixed, paraffin-embedded tissue-based assay has been developed and independently validated as a predictor of response and prognosis after anthracycline/cyclophosphamide–based chemotherapy in the neoadjuvant and adjuvant settings. These findings warrant further validation in a prospective clinical study.
Resumo:
BACKGROUND: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling.
METHODS: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ(2) tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided.
RESULTS: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts.
CONCLUSIONS: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa.
Resumo:
BACKGROUND: Disability-adjusted life-years (DALYs) are an indicator of mortality, morbidity, and disability. We calculated DALYs for cancer in middle-aged and older adults participating in the Consortium on Health and Ageing Network of Cohorts in Europe and the United States (CHANCES) consortium.
METHODS: A total of 90 199 participants from five European cohorts with 10 455 incident cancers and 4399 deaths were included in this study. DALYs were calculated as the sum of the years of life lost because of premature mortality (YLLs) and the years lost because of disability (YLDs). Population-attributable fractions (PAFs) were also estimated for five cancer risk factors, ie, smoking, adiposity, physical inactivity, alcohol intake, and type II diabetes.
RESULTS: After a median follow-up of 12 years, the total number of DALYs lost from cancer was 34 474 (382 per 1000 individuals) with a similar distribution by sex. Lung cancer was responsible for the largest number of lost DALYs (22.9%), followed by colorectal (15.3%), prostate (10.2%), and breast cancer (8.7%). Mortality (81.6% of DALYs) predominated over disability. Ever cigarette smoking was the risk factor responsible for the greatest total cancer burden (24.0%, 95% confidence interval [CI] = 22.2% to 26.0%), followed by physical inactivity (4.9%, 95% CI = 0.8% to 8.1%) and adiposity (1.8%, 95% CI = 0.2% to 2.8%).
CONCLUSIONS: DALYs lost from cancer were substantial in this large European sample of middle-aged and older adults. Even if the burden of disease because of cancer is predominantly caused by mortality, some cancers have sizeable consequences for disability. Smoking remained the predominant risk factor for total cancer burden.
Resumo:
BACKGROUND: Previously we identified a DNA damage response-deficient (DDRD) molecular subtype within breast cancer. A 44-gene assay identifying this subtype was validated as predicting benefit from DNA-damaging chemotherapy. This subtype was defined by interferon signaling. In this study, we address the mechanism of this immune response and its possible clinical significance.
METHODS: We used immunohistochemistry (IHC) to characterize immune infiltration in 184 breast cancer samples, of which 65 were within the DDRD subtype. Isogenic cell lines, which represent DDRD-positive and -negative, were used to study the effects of chemokine release on peripheral blood mononuclear cell (PBMC) migration and the mechanism of immune signaling activation. Finally, we studied the association between the DDRD subtype and expression of the immune-checkpoint protein PD-L1 as detected by IHC. All statistical tests were two-sided.
RESULTS: We found that DDRD breast tumors were associated with CD4+ and CD8+ lymphocytic infiltration (Fisher's exact test P < .001) and that DDRD cells expressed the chemokines CXCL10 and CCL5 3.5- to 11.9-fold more than DNA damage response-proficient cells (P < .01). Conditioned medium from DDRD cells statistically significantly attracted PBMCs when compared with medium from DNA damage response-proficient cells (P < .05), and this was dependent on CXCL10 and CCL5. DDRD cells demonstrated increased cytosolic DNA and constitutive activation of the viral response cGAS/STING/TBK1/IRF3 pathway. Importantly, this pathway was activated in a cell cycle-specific manner. Finally, we demonstrated that S-phase DNA damage activated expression of PD-L1 in a STING-dependent manner.
CONCLUSIONS: We propose a novel mechanism of immune infiltration in DDRD tumors, independent of neoantigen production. Activation of this pathway and associated PD-L1 expression may explain the paradoxical lack of T-cell-mediated cytotoxicity observed in DDRD tumors. We provide a rationale for exploration of DDRD in the stratification of patients for immune checkpoint-based therapies.
Resumo:
Background BRCA1-mutant breast tumors are typically estrogen receptor alpha (ER alpha) negative, whereas most sporadic tumors express wild-type BRCA1 and are ER alpha positive. We examined a possible mechanism for the observed ER alpha-negative phenotype of BRCA1-mutant tumors.
Methods We used a breast cancer disease-specific microarray to identify transcripts that were differentially expressed between paraffin-embedded samples of 17 BRCA1-mutant and 14 sporadic breast tumors. We measured the mRNA levels of estrogen receptor 1 (ESR1) ( the gene encoding ER alpha), which was differentially expressed in the tumor samples, by quantitative polymerase chain reaction. Regulation of ESR1 mRNA and ER alpha protein expression was assessed in human breast cancer HCC1937 cells that were stably reconstituted with wild-type BRCA1 expression construct and in human breast cancer T47D and MCF-7 cells transiently transfected with BRCA1-specific short-interfering RNA ( siRNA). Chromatin immunoprecipitation assays were performed to determine if BRCA1 binds the ESR1 promoter and to identify other interacting proteins. Sensitivity to the antiestrogen drug fulvestrant was examined in T47D and MCF-7 cells transfected with BRCA1-specific siRNA. All statistical tests were two-sided.
Results Mean ESR1 gene expression was 5.4-fold lower in BRCA1-mutant tumors than in sporadic tumors ( 95% confidence interval [CI]=2.6-fold to 40.1-fold, P =.0019). The transcription factor Oct-1 recruited BRCA1 to the ESR1 promoter, and both BRCA1 and Oct-1 were required for ER alpha expression. BRCA1-depleted breast cancer cells expressing exogenous ER alpha were more sensitive to fulvestrant than BRCA1-depleted cells transfected with empty vector ( T47D cells, the mean concentration of fulvestrant that inhibited the growth of 40% of the cells [IC40] for empty vector versus ER alpha: > 10(-5) versus 8.0 x 10(-9) M [ 95% CI=3.1x10(-10) to 3.2 x 10(-6) M]; MCF-7 cells, mean IC40 for empty vector versus ER alpha : > 10(-5) versus 4.9 x 10(-8) M [ 95% CI=2.0 x 10(-9) to 3.9 x 10(-6) M]).
Conclusions BRCA1 alters the response of breast cancer cells to antiestrogen therapy by directly modulating ER alpha expression.