89 resultados para NUCLEAR FUELS
Resumo:
Background: In order to isolate the â??bestâ?? sperm for assisted conception a discontinuous two-step density gradient centrifugation is usually employed. This technique is known to isolate a subpopulation with good motility, morphology and nuclear DNA (nDNA) integrity. As yet its ability to isolate sperm with unfragmented mitochondrial DNA (mtDNA) is unknown. Methods: Semen was obtained from men (n=28) attending our Regional Fertility Centre for infertility investigations. We employed a modified long polymerase chain reaction to study mtDNA and a modified alkaline Comet assay to determine nDNA fragmentation. Results: The high- density fraction displayed significantly more wild type mtDNA (75% of samples) than that of the low- density fraction (25% of samples). In the high-density fraction, there was a higher incidence of single, rather than double or multiple deletions and the deletions were predominantly small scale (0.1-4.0kb). There was a strong correlation between nDNA fragmentation, the number of mtDNA deletions (r=0.7, p
Resumo:
Background: Mitochondria are vital to sperm as their motility powerhouses. They are also the only animal organelles with their own unique genome; encoding subunits for the complexes required for the electron transfer chain. Methods: A modified long PCR technique was used to study mitochondrial DNA (mtDNA) in ejaculated and testicular sperm samples from fertile men (n=11) and testicular sperm from men with obstructive azoospermia (n=25). Nuclear DNA fragmentation was measured by an alkaline single cell gel electrophoresis (COMET) assay. Results: Wild-type mtDNA was detected in only 60% of fertile mens�??�?�¢?? testicular sperm, 50% of their ejaculated sperm and 46% of testicular sperm from men with obstructive azoospermia. The incidence of mitochondrial deletions in testicular sperm of fertile and infertile men was not significantly different but the mean size of the deletions was significantly less in testicular sperm from fertile men compared with men with obstructive azoospermia (p<0.02). Nuclear DNA fragmentation in testicular sperm from fertile men and men with obstructive azoospermia was not significantly different. Conclusion: Multiple mtDNA deletions are common in testicular and ejaculated sperm from both fertile and infertile men. However, in males with obstructive azoospermia the mtDNA deletions in testicular sperm are of a larger scale.