149 resultados para NONSELF RECOGNITION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a summary of our studies on robust speech recognition based on a new statistical approach – the probabilistic union model. We consider speech recognition given that part of the acoustic features may be corrupted by noise. The union model is a method for basing the recognition on the clean part of the features, thereby reducing the effect of the noise on recognition. To this end, the union model is similar to the missing feature method. However, the two methods achieve this end through different routes. The missing feature method usually requires the identity of the noisy data for noise removal, while the union model combines the local features based on the union of random events, to reduce the dependence of the model on information about the noise. We previously investigated the applications of the union model to speech recognition involving unknown partial corruption in frequency band, in time duration, and in feature streams. Additionally, a combination of the union model with conventional noise-reduction techniques was studied, as a means of dealing with a mixture of known or trainable noise and unknown unexpected noise. In this paper, a unified review, in the context of dealing with unknown partial feature corruption, is provided into each of these applications, giving the appropriate theory and implementation algorithms, along with an experimental evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel approach to goal recognition based on a two-stage paradigm of graph construction and analysis. First, a graph structure called a Goal Graph is constructed to represent the observed actions, the state of the world, and the achieved goals as well as various connections between these nodes at consecutive time steps. Then, the Goal Graph is analysed at each time step to recognise those partially or fully achieved goals that are consistent with the actions observed so far. The Goal Graph analysis also reveals valid plans for the recognised goals or part of these goals. Our approach to goal recognition does not need a plan library. It does not suffer from the problems in the acquisition and hand-coding of large plan libraries, neither does it have the problems in searching the plan space of exponential size. We describe two algorithms for Goal Graph construction and analysis in this paradigm. These algorithms are both provably sound, polynomial-time, and polynomial-space. The number of goals recognised by our algorithms is usually very small after a sequence of observed actions has been processed. Thus the sequence of observed actions is well explained by the recognised goals with little ambiguity. We have evaluated these algorithms in the UNIX domain, in which excellent performance has been achieved in terms of accuracy, efficiency, and scalability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors are concerned with the development of computer systems that are capable of using information from faces and voices to recognise people's emotions in real-life situations. The paper addresses the nature of the challenges that lie ahead, and provides an assessment of the progress that has been made in the areas of signal processing and analysis techniques (with regard to speech and face), and the psychological and linguistic analyses of emotion. Ongoing developmental work by the authors in each of these areas is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the problem of speaker identi-fication and verification in noisy conditions, assuming that speechsignals are corrupted by environmental noise, but knowledgeabout the noise characteristics is not available. This research ismotivated in part by the potential application of speaker recog-nition technologies on handheld devices or the Internet. Whilethe technologies promise an additional biometric layer of securityto protect the user, the practical implementation of such systemsfaces many challenges. One of these is environmental noise. Due tothe mobile nature of such systems, the noise sources can be highlytime-varying and potentially unknown. This raises the require-ment for noise robustness in the absence of information about thenoise. This paper describes a method that combines multicondi-tion model training and missing-feature theory to model noisewith unknown temporal-spectral characteristics. Multiconditiontraining is conducted using simulated noisy data with limitednoise variation, providing a “coarse” compensation for the noise,and missing-feature theory is applied to refine the compensationby ignoring noise variation outside the given training conditions,thereby reducing the training and testing mismatch. This paperis focused on several issues relating to the implementation of thenew model for real-world applications. These include the gener-ation of multicondition training data to model noisy speech, thecombination of different training data to optimize the recognitionperformance, and the reduction of the model’s complexity. Thenew algorithm was tested using two databases with simulated andrealistic noisy speech data. The first database is a redevelopmentof the TIMIT database by rerecording the data in the presence ofvarious noise types, used to test the model for speaker identifica-tion with a focus on the varieties of noise. The second database isa handheld-device database collected in realistic noisy conditions,used to further validate the model for real-world speaker verifica-tion. The new model is compared to baseline systems and is foundto achieve lower error rates.