180 resultados para NITRIC-OXIDE PROTECTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinopathy of prematurity is a sight-threatening complication of premature birth caused by nitrooxidativeinsult to the developing retinal vasculature during therapeutic hyperoxia exposure and laterischemia-induced neovascularization on supplemental oxygen withdrawal. In the vasodegenerativephase, during hyperoxia, defective endothelial nitric oxide synthase (NOS) produces reactive oxygenand nitrogen free radicals rather than vasoprotective nitric oxide for unclear reasons. More important,NOS critically depends on the availability of the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4).Because BH4 synthesis is controlled enzymatically by GTP cyclohydrolase (GTPCH), we used GTPCHdepletedmice [hyperphenylalanaemia strain Q4 (hph1)] to investigate the impact of hyperoxia on BH4bioavailability and retinal vascular pathology in the neonate. Hyperoxia decreased BH4 in retinas,lungs, and aortas in all experimental groups, resulting in a dose-dependent decrease in NOS activityand, in the wild-type group, elevated NOS-derived superoxide. Retinal dopamine levels were similarlydiminished, consistent with the dependence of tyrosine hydroxylase on BH4. Despite greater depletionof BH4, the hphþ/ and hph1/ groups did not show exacerbated hyperoxia-induced vessel closure,but exhibited greater vascular protection and reduced progression to neovascular disease. This vasoprotectiveeffect was independent of enhanced circulating vascular endothelial growth factor (VEGF),which was reduced by hyperoxia, but Q5 to local ganglion cell layerederived VEGF. A constitutively higherlevel of VEGF expression associated with retinal development protects GTPCH-deficient neonates fromoxygen-induced vascular damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Exhaled nitric oxide has been proposed as a marker for airway inflammation in asthma. The aim of this study was to compare exhaled nitric oxide levels with inflammatory cells and mediators in bronchoalveolar lavage fluid from asthmatic and normal children.

Methods: Children were recruited from elective surgical lists and a non-bronchoscopic bronchoalveolar lavage (BAL) was performed after induction of anaesthesia. Exhaled nitric oxide (parts per billion) was measured by two techniques: tidal breathing and restricted breath.

Results: Median (interquartile range) exhaled nitric oxide measured by restricted breath was increased in asthmatics compared with normal children (24.3 (10.5–66.5) v 9.7 (6.5–16.5), difference between medians 14.6 (95% CI 5.1 to 29.9), p=0.001). In asthmatic children exhaled nitric oxide correlated significantly with percentage eosinophils (r=0.78, p<0.001 (tidal breathing) and r=0.78, p<0.001 (restricted breath)) and with eosinophilic cationic protein (r=0.53, p<0.01 restricted breath)), but not with other inflammatory cells in the BAL fluid. The area under the receiver operator characteristic curves for the prediction of the presence of eosinophilic airways inflammation by exhaled nitric oxide (tidal and restricted) was 0.80 and 0.87, respectively.

Conclusions: Exhaled nitric oxide correlates closely with percentage eosinophils in BAL fluid in asthmatic children and is therefore likely to be a useful non-invasive marker of airway inflammation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes is associated with oxidative stress and increased levels of inflammatory cytokines. The aim of the study was to assess the effects of inflammatory cytokines and oxidative stress associated with raised glucose levels on inducible nitric oxide synthase (iNOS) promoter activity in intestinal epithelial cells. High glucose (25 mmol/l) conditions reduced glutathione (GSH) levels in the human intestinal epithelial cell line, DLD-1. Addition of the antioxidant alpha-lipoic acid resulted in the restoration of GSH levels to normal. Upregulation of basal iNOS promoter activity was observed when cells were incubated in high glucose alone. This effect was significantly reduced by the addition of the antioxidant, alpha-lipoic acid and completely blocked with inhibition of NFkappa B activity. Cytokine stimulation [interleukin-1 beta, tumor necrosis factor-alpha, interferon-gamma] induced iNOS promoter activity in all conditions and this was accompanied by an increase in nitric oxide (NO) production. Inhibition of NFkappa-B activity decreased but did not completely inhibit cytokine-induced iNOS promoter activity and subsequent NO production. In conclusion, high glucose-induced iNOS promoter activity is mediated in part through intracellular GSH and NFkappa-B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The G894T endothelial nitric oxide synthase (eNOS) polymorphism results in a Glu to Asp substitution at position 298. This position is located externally on the protein and as the regulation of eNOS is dependent on its subcellular localization and interaction with modulatory proteins, we aimed to address whether the substitution of Asp at 298 had any effect on these mechanisms. Initially, we developed a novel method to accurately determine molar quantities of each variant by expressing them as green fluorescent protein (GFP) fusion proteins and using recombinant adenoviruses to facilitate transient infection of human microvascular endothelial cells. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting of eNOS298Asp revealed a 135-kDa proteolytic fragment which was not present with eNOS298Glu. This proteolysis was prevented by using LDS buffer confirming that this differential cleavage is an artefact of sample preparation and unlikely to occur intracellularly. Nitric oxide was measured following stimulation with calcium ionophore or oestrogen in the presence of varying sepiapterin concentrations. GFP fluorescence was used to quantify the amount of fusion protein and calculate intracellular specific activity. There was no significant difference in intracellular specific activity between Glu298 and Asp298 eNOS in response to calcium ionophore or oestrogen. Tetrahydrobiopterin supplementation increased eNOS activity of both variants in an identical manner. The presence of the GFP also facilitated the visualization of the variants by confocal microscopy and demonstrated that both localized to the plasma membrane and the Golgi. These findings demonstrate that the Asp substitution at 298 does not have a major effect in modulating eNOS activity in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Estrogen acutely activates endothelial nitric oxide synthase (eNOS). However, the identity of the receptors involved in this rapid response remains unclear. Methods and Results We detected an estrogen receptor (ER) transcript in human endothelial cells that encodes a truncated 46-kDa ER (1a-hER-46). A corresponding 46-kDa ER protein was identified in endothelial cell lysates. Transfection of cDNAs encoding the full-length ER (ER-66) and 1a-hER-46 resulted in appropriately sized recombinant proteins identified by anti-ER antibodies. Confocal microscopy revealed that a proportion of both ER-66 and hER-46 was localized outside the nucleus and mediated specific cell-surface binding of estrogen as assessed by FITC-conjugated, BSA-estrogen binding studies. Both ER isoforms colocalized with eNOS and mediated acute activation of eNOS in response to estrogen stimulation. However, estrogen-stimulated transcriptional activation mediated by 1a-hER-46 was much less than with ER-66. Furthermore, 1a-hER-46 inhibited classical hER-66 mediated transcriptional activation in a dominant-negative fashion. Conclusions These findings suggest that expression of an alternatively spliced, truncated ER isoform in human endothelial cells confers a unique ability to mediate acute but not transcriptional responses to estrogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) activity. BH4 levels are regulated by de novo biosynthesis; the rate-limiting enzyme is GTP cyclohydrolase I (GTPCH). BH4 activates and promotes homodimerisation of purified eNOS protein, but the intracellular mechanisms underlying BH4-mediated eNOS regulation in endothelial cells remain less clear. We aimed to investigate the role of BH4 levels in intracellular eNOS regulation, by targeting the BH4 synthetic pathway as a novel strategy to modulate intracellular BH4 levels. Methods: We constructed a recombinant adenovirus, AdGCH, encoding human GTPCH. We infected human endothelial cells with AdGCH, investigated the changes in intracellular biopterin levels, and determined the effects on eNOS enzymatic activity, protein levels and dimerisation. Results: GTPCH gene transfer in EAhy926 endothelial cells increased BH4 >10-fold compared with controls (cells alone or control adenovirus infection), and greatly enhanced NO production in a dose-dependent, eNOS-specific manner. We found that eNOS was principally monomeric in control cells, whereas GTPCH gene transfer resulted in a striking increase in eNOS homodimerisation. Furthermore, the total amounts of both native eNOS protein and a recombinant eNOS–GFP fusion protein were significantly increased following GTPCH gene transfer. Conclusions: These findings suggest that GTPCH gene transfer is a valid approach to increase BH4 levels in human endothelial cells, and provide new evidence for the relative importance of different mechanisms underlying BH4-mediated eNOS regulation in intact human endothelial cells. Additionally, these observations suggest that GTPCH may be a rational target to augment endothelial BH4 and normalise eNOS activity in endothelial dysfunction states.