78 resultados para Motivational variables
Resumo:
Event-related potentials (ERPs) and other electroencephalographic (EEG) evidence show that frontal brain areas of higher and lower socioeconomic status (SES) children are recruited differently during selective attention tasks. We assessed whether multiple variables related to self-regulation (perceived mental effort) emotional states (e.g., anxiety, stress, etc.) and motivational states (e.g., boredom, engagement, etc.) may co-occur or interact with frontal attentional processing probed in two matched-samples of fourteen lower-SES and higher-SES adolescents. ERP and EEG activation were measured during a task probing selective attention to sequences of tones. Pre- and post-task salivary cortisol and self-reported emotional states were also measured. At similar behavioural performance level, the higher-SES group showed a greater ERP differentiation between attended (relevant) and unattended (irrelevant) tones than the lower-SES group. EEG power analysis revealed a cross-over interaction, specifically, lower-SES adolescents showed significantly higher theta power when ignoring rather than attending to tones, whereas, higher-SES adolescents showed the opposite pattern. Significant theta asymmetry differences were also found at midfrontal electrodes indicating left hypo-activity in lower-SES adolescents. The attended vs. unattended difference in right midfrontal theta increased with individual SES rank, and (independently from SES) with lower cortisol task reactivity and higher boredom. Results suggest lower-SES children used additional compensatory resources to monitor/control response inhibition to distracters, perceiving also more mental effort, as compared to higher-SES counterparts. Nevertheless, stress, boredom and other task-related perceived states were unrelated to SES. Ruling out presumed confounds, this study confirms the midfrontal mechanisms responsible for the SES effects on selective attention reported previously and here reflect genuine cognitive differences.
Resumo:
A method for simulation of acoustical bores, useful in the context of sound synthesis by physical modeling of woodwind instruments, is presented. As with previously developed methods, such as digital waveguide modeling (DWM) [Smith, Comput. Music J. 16, pp 74-91 (1992)] and the multi convolution algorithm (MCA) [Martinez et al., J. Acoust. Soc. Am. 84, pp 1620-1627 (1988)], the approach is based on a one-dimensional model of wave propagation in the bore. Both the DWM method and the MCA explicitly compute the transmission and reflection of wave variables that represent actual traveling pressure waves. The method presented in this report, the wave digital modeling (WDM) method, avoids the typical limitations associated with these methods by using a more general definition of the wave variables. An efficient and spatially modular discrete-time model is constructed from the digital representations of elemental bore units such as cylindrical sections, conical sections, and toneholes. Frequency-dependent phenomena, such as boundary losses, are approximated with digital filters. The stability of a simulation of a complete acoustic bore is investigated empirically. Results of the simulation of a full clarinet show that a very good concordance with classic transmission-line theory is obtained.
Resumo:
This study presents a reproducible, cost-effective in vitro encrustation model and, furthermore, describes the effects of components of the artificial urine and the presence of agents that modify the action of urease on encrustation on commercially available ureteral stents. The encrustation model involved the use of small-volume reactors (700 mL) containing artificial urine and employing an orbital incubator (at 37 degrees C) to ensure controlled stirring. The artificial urine contained sources of calcium and magnesium (both as chlorides), albumin and urease. Alteration of the ratio (% w/w) of calcium salt to magnesium salt affected the mass of encrustation, with the greatest encrustation noted whenever magnesium was excluded from the artificial urine. Increasing the concentration of albumin, designed to mimic the presence of protein in urine, significantly decreased the mass of both calcium and magnesium encrustation until a plateau was observed. Finally, exclusion of urease from the artificial urine significantly reduced encrustation due to the indirect effects of this enzyme on pH. Inclusion of the urease inhibitor, acetohydroxamic acid, or urease substrates (methylurea or ethylurea) into the artificial medium markedly reduced encrustation on ureteral stents. In conclusion, this study has described the design of a reproducible, cost-effective in vitro encrustation model. Encrustation was markedly reduced on biomaterials by the inclusion of agents that modify the action of urease. These agents may, therefore, offer a novel clinical approach to the control of encrustation on urological medical devices. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Recently Ziman et al. [Phys. Rev. A 65, 042105 (2002)] have introduced a concept of a universal quantum homogenizer which is a quantum machine that takes as input a given (system) qubit initially in an arbitrary state rho and a set of N reservoir qubits initially prepared in the state xi. The homogenizer realizes, in the limit sense, the transformation such that at the output each qubit is in an arbitrarily small neighborhood of the state xi irrespective of the initial states of the system and the reservoir qubits. In this paper we generalize the concept of quantum homogenization for qudits, that is, for d-dimensional quantum systems. We prove that the partial-swap operation induces a contractive map with the fixed point which is the original state of the reservoir. We propose an optical realization of the quantum homogenization for Gaussian states. We prove that an incoming state of a photon field is homogenized in an array of beam splitters. Using Simon's criterion, we study entanglement between outgoing beams from beam splitters. We derive an inseparability condition for a pair of output beams as a function of the degree of squeezing in input beams.
Resumo:
We show that two qubits can be entangled by local interactions with an entangled two-mode continuous variable state. This is illustrated by the evolution of two two-level atoms interacting with a two-mode squeezed state. Two modes of the squeezed field are injected respectively into two spatially separate cavities and the atoms are then sent into the cavities to interact resonantly with the cavity field. We find that the atoms may be entangled even by a two-mode squeezed state which has been decohered while penetrating into the cavity.
Exploring intrinsic and extrinsic motivational differences according to choice of physical activity.
Resumo:
We analyze von Neumann-like quantum measurements in terms of simultaneous virtual paths constructed for two noncommuting variables. The approach is applied to measurements of operator functions of conjugate variables and to the joint measurements of such variables. The limits of applicability of the restricted phase space path integral are studied. We demonstrate that, for a simple joint measurement, using entangled meter states allows one to manipulate the order in which the measurements are conducted. The effects of '' weakening '' a measurement by choosing unsharp meter states are also discussed.
Resumo:
The interaction between supernova ejecta and circumstellar matter, arising from previous episodes of mass loss, provides us with a means of constraining the progenitors of supernovae. Radio observations of a number of supernovae show quasi-periodic deviations from a strict power-law decline at late times. Although several possibilities have been put forward to explain these modulations, no single explanation has proven to be entirely satisfactory. Here we suggest that Luminous blue variables undergoing S-Doradus type variations give rise to enhanced phases of mass loss that are imprinted on the immediate environment of the exploding star as a series of density enhancements. The variations in mass loss arise from changes in the ionization balance of Fe, the dominant ion that drives the wind. With this idea, we find that both the recurrence timescale of the variability and the amplitude of the modulations are in line with the observations. Our scenario thus provides a natural, single-star explanation for the observed behaviour that is, in fact, expected on theoretical grounds.