35 resultados para Mandibular prosthesis
Resumo:
This case report details the successful rehabilitation of an edentulous patient using a complete upper prosthesis and a lower implant retained overdenture. The provision of care was split between a specialist centre and a primary care setting. This approach reduced inconvenience to the patient. Modern surgical and prosthodontic techniques also reduced the total delivery time. After initial consultation a new set of complete dentures was prescribed with changes in design to the originals. The patient was also planned for placement of two mandibular implants to stabilise and retain the mandibular denture. The first line of treatment involved provision of a new set of dentures constructed by the patient's general dental practitioner. Dental implants were then placed in a specialist centre and the patient returned to the dental practice for attachment of the lower denture to the dental implants. The benefits and success of mandibular implant retained dentures are well documented. With delivery of the overdenture, the patient reported increased satisfaction with his prostheses which allowed him to eat a greater range of foods and enabled him to feel confident when speaking and socialising.
Resumo:
INTRODUCTION:
Class II malocclusion is often associated with retrognathic mandible. Some of these problems require surgical correction. The purposes of this study were to investigate treatment outcomes in patients with Class II malocclusions whose treatment included mandibular advancement surgery and to identify predictors of good outcomes.
METHODS:
Pretreatment and posttreatment cephalometric radiographs of 90 patients treated with mandibular advancement surgery by 57 consultant orthodontists in the United Kingdom before September 1998 were digitized, and cephalometric landmarks were identified. Paired samples t tests were used to compare the pretreatment and posttreatment cephalometric values for each patient. For each cephalometric variable, the proportion of patients falling within the ideal range was identified. Multiple logistic regression analysis was performed to identify predictors of achieving ideal range outcomes for the key skeletal (ANB and SNB angles), dental (overjet and overbite), and soft-tissue (Holdaway angle) measurements.
RESULTS:
An overjet within the ideal range of 1 to 4 mm was achieved in 72% of patients and was more likely with larger initial ANB angles. Horizontal correction of the incisor relationship was achieved by a combination of 75% skeletal movement and 25% dentoalveolar change. An ideal posttreatment ANB angle was achieved in 42% of patients and was more likely in females and those with larger pretreatment ANB angles. Ideal soft-tissue Holdaway angles (7 degrees to 14 degrees ) were achieved in 49% of patients and were more likely in females and those with smaller initial SNA angles. Mandibular incisor decompensation was incomplete in 28% of patients and was more likely in females and patients with greater pretreatment mandibular incisor proclination. Correction of increased overbite was generally successful, although anterior open bites were found in 16% of patients at the end of treatment. These patients were more likely to have had initial open bites.
CONCLUSIONS:
Mandibular surgery had a good success rate in normalizing the main dental and skeletal relationships. Less ideal soft-tissue profile outcomes were associated with larger pretreatment SNA-angle values, larger final mandibular incisor inclinations, and smaller final maxillary incisor inclinations. The use of mandibular surgery to correct anterior open bite was associated with poor outcomes.
Resumo:
Computational modelling is becoming ever more important for obtaining regulatory approval for new medical devices. An accepted approach is to infer performance in a population from an analysis conducted for an idealised or ‘average’ patient; we present here a method for predicting the performance of an orthopaedic implant when released into a population—effectively simulating a clinical trial. Specifically we hypothesise that an analysis based on a method for predicting the performance in a population will lead to different conclusions than an analysis based on an idealised or ‘average’ patient. To test this hypothesis we use a finite element model of an intramedullary implant in a bone whose size and remodelling activity is different for each individual in the population. We compare the performance of a low Young’s modulus implant (View the MathML source) to one with a higher Young’s modulus (200 GPa). Cyclic loading is applied and failure is assumed when the migration of the implant relative to the bone exceeds a threshold magnitude. The analysis for an idealised of ‘average’ patient predicts that the lower modulus device survives longer whereas the analysis simulating a clinical trial predicts no statistically-significant tendency (p=0.77) for the low modulus device to perform better. It is concluded that population-based simulations of implant performance–simulating a clinical trial–present a very valuable opportunity for more realistic computational pre-clinical testing of medical devices.