47 resultados para MULTIWALLED CARBON NANOTUBES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report calculations of the transport properties of multiwalled carbon nanotubes based on a scattering-theoretic approach that takes into account scattering within each tube, between tubes, and at the metal contacts. We find that only the outer tube contributes to the conductance, as has been implied by experiments. Referring to experiments performed with liquid-metal contacts, we also explain why the measured conductance is close to an integer number of conductance quanta, when the tubes are immersed in the liquid metal for several hundreds of nanometers and is not an integer when they are immersed for only a few nanometers. Finally, we propose that the observed conductance of only one quantum

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymethyl methacrylate (PMMA) bone cement–multiwalled carbon nanotube (MWCNT) nanocomposites with a weight loading of 0.1% were prepared using 3 different methods of MWCNT incorporation. The mechanical and thermal properties of the resultant nanocomposite cements were characterised in accordance with the international standard for acrylic resin cements. The mechanical properties of the resultant nanocomposite cements were influenced by the type of MWCNT and method of incorporation used. The exothermic polymerisation reaction for the PMMA bone cement was significantly reduced when thermally conductive functionalised MWCNTs were added. This reduction in exotherm translated in a decrease in thermal necrosis index value of the respective nanocomposite cements, which potentially could reduce the hyperthermia experienced in vivo. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different scales were analysed using scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect into the wake of the crack, normal to the direction of crack growth. MWCNT agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the method used to incorporate the MWCNTs into the cement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multi-walled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites of multi-walled carbon nanotubes (MWCNT) of varied functionality (unfunctionalised and carboxyl and amine functionalised) with polymethyl methacrylate (PMMA) were prepared for use as a bone cement. The MWCNT loadings ranged from 0.1 to 1.0 wt.%. The fatigue properties of these MWCNT–PMMA bone cements were characterised at MWCNT loading levels of 0.1 and 0.25 wt.% with the type and wt.% loading of MWCNT used having a strong influence on the number of cycles to failure. The morphology and degree of dispersion of the MWCNT in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in the fatigue properties were attributed to the MWCNT arresting/retarding crack propagation through the cement through a bridging effect and hindering crack propagation. MWCNT agglomerates were evident within the cement microstructure and the degree of agglomeration was dependent on the level of loading and functionality of the MWCNT. The biocompatibility of the MWCNT–PMMA cements at MWCNT loading levels upto 1.0 wt.% was determined by means of established biological cell culture assays using MG-63 cells. Cell attachment after 4 h was determined using the crystal violet staining assay. Cell viability was determined over 7 days in vitro using the standard colorimetric MTT assay. Confocal scanning laser microscopy and SEM analysis was also used to assess cell morphology on the various substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carboxyl-functionalized multiwalled carbon nanotubes (MWCNTs) have been successfully radiolabelled with cobalt-57 (57Co) (T1/2 = 270 days) via the attachment of the bifunctional caged ligand MeAMN3S3sar. In this study MeAMN3S3sar has been synthesized and coupled to MWCNTs to form the conjugate MWCNT–MeAMN3S3sar. Synthesis was confirmed with nuclear magnetic resonance. X-ray photoelectron spectroscopy (XPS) confirmed the conjugation. Non-radioactive labelling of this conjugate was completed with Cu(II) ions to confirm the stability of the MeAMN3S3sar after coupling with the MWCNTs. The complexation of the Cu(II) was also confirmed with XPS. Transmission electron microscopy was used to demonstrate that the coupling reaction had a negligible effect on the size and shape of the MWCNTs. Radiolabelling of the MWCNT–MeAMN3S3sar conjugate and pristine (untreated) MWCNTs (non-specific) with the gamma-emitting radioactive isotope 57Co were compared. The radiolabelling efficiency of the MWCNT–MeAMN3S3sar conjugate was significantly higher (95% vs. 0.1%) (P ⩽ 0.001) than for the unconjugated pristine MWCNTs. This will allow for the potential tracking of nanoparticle movement in vitro and in vivo.