49 resultados para Ludwik Fleck
Resumo:
Presented is a study that expands the body of knowledge on the effect of in-cycle speed fluctuations on performance of small engines. It uses the engine and drivetrain models developed previously by Callahan, et al. (1) to examine a variety of engines. The predicted performance changes due to drivetrain effects are shown in each case, and conclusions are drawn from those results. The single-cylinder, high performance four-stroke engine showed significant changes in predicted performance compared to the prediction with zero speed fluctuation in the model. Measured speed fluctuations from a firing Yamaha YZ426 engine were applied to the simulation in addition to data from a simple free mass model. Both methods predicted similar changes in performance. The multiple-cylinder, high performance two-stroke engine also showed significant changes in performance depending on the firing configuration. With both engines, the change in performance diminished with increasing mean engine speed. The low output, single-cylinder two-stroke engine simulation showed only a negligible change in performance, even with high amplitude speed fluctuations. Because the torque versus engine speed characteristic for the engine was so flat, this was expected. The cross-charged, multi-cylinder two-stroke engine also showed only a negligible change in performance. In this case, the combination of a relatively high inertia rotating assembly and the multiple cylinder firing events within the revolution smoothing the torque pulsations reduced the speed fluctuation amplitude itself.
Some Fundamental Aspects of the Discharge Coefficients of Cylinder Porting and Ducting Restrictions.
Correlation of simulated and measured noise emissions using a combined 1D/3D computational technique