96 resultados para Laterally Loaded Pile


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several methods are available for predicting ultimate lateral load resistance of laterally loaded pile. These methods often produce significantly different ultimate lateral resistance. This makes it difficult to select an appropriate method in designing/predicting ultimate lateral resistance of pile. This paper presents a review of two different methods; Meyerh of and Patra & Pise for predicting lateral resistance of pile. Then, the predicted ultimate lateral resistances by these two methods are compared with the experimental results. It is found that Meyerhof's method gives better prediction for single pile with smaller L/d ratio whereas Patra & Pise method gives better predictions for pile groups with higher L/d. Thus, none of these methods can be applicable universally for all possible conditions. Also the parametric study on ultimate lateral resistance revealed that length to diameter ratio, pile spacing, pile configuration in a pile group are important parameters for prediction of lateral load resistance. © 2009 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purification capacity of a laboratory scale tidal flow reed bed system with final effluent recirculation at a ratio of 1:1 was investigated in this study. In particular, this four-stage reed bed system was highly loaded with strong agricultural wastewater. Under the hydraulic and organic loading rates as high as 0.43 m3/m2d and 1055 gCOD/m2d, respectively, the average removal efficiencies of COD, BOD5, SS, NH4-N and P were 77%, 78%, 66%, 62% and 38%. Even with the high loading rates, approximately 30% of NH4-N was converted into NO2-N and NO3-N from the mid-stage of the system where nitrification took place. The results suggest that the multi-stage reed bed system could be employed to treat strong wastewater under high loading, especially for the substantive mass removal of solids, organic matter and ammoniacal-nitrogen. Tidal flow combined with effluent recirculation is a favourable operation strategy to achieve this objective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Infection remains a severe complication following a total hip replacement. If infection is suspected when revision surgery is being performed, additional gentamicin is often added to the cement on an ad hoc basis in an attempt to reduce the risk of recurrent infection.

Methods and results: In this in vitro study, we determined the effect of incorporating additional gentamicin on the mechanical properties of cement. We also determined the degree of gentamicin release from cement, and also the extent to which biofilms of clinical Staphylococcus spp. isolates form on cement in vitro. When gentamicin was added to unloaded cement (1–4 g), there was a significant reduction in the mechanical performance of the loaded cements compared to unloaded cement. A significant increase in gentamicin release from the cement over 72 h was apparent, with the amount of gentamicin released increasing significantly with each additional 1 g of gentamicin added. When overt infection was modeled, the incorporation of additional gentamicin did result in an initial reduction in bacterial colonization, but this beneficial effect was no longer apparent by 72 h, with the clinical strains forming biofilms on the cements despite the release of high levels of gentamicin.

Interpretation: Our findings indicate that the addition of large amounts of gentamicin to cement is unlikely to eradicate bacteria present as a result of an overt infection of an existing implant, and could result in failure of the prosthetic joint because of a reduction in mechanical performance of the bone cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work described in this paper demonstrates a combined novel approach to the preparation of drug loaded poly(e-caprolactone) layered silicate nanocomposites using hot melt extrusion, a continuous process in contrast to the normal batch type processing used to prepare polymeric drug delivery systems, and most significantly the use of high surface area, large aspect ratio inorganic nanoplatelets to retard drug release. The methodology and results described in this article are significant and could equally be applied to the controlled/retarded release of any bio-active molecule (pharmaceutical, nutraceutical, protein, DNA/iRNA, anti-microbial, anti-coagulant, etc.) from biopolymers and the production of medical devices from such composite materials.