147 resultados para Iron ore tailings


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the behaviour of iron ore fines with varying levels of adhesion was investigated using a confined compression test and a uniaxial test. The uniaxial test was conducted using the semi-automated uniaxial EPT tester in which the cohesive strength of a bulk solid is evaluated from an unconfined compression test following a period of consolidation to a pre-defined vertical stress. The iron ore fines were also tested by measuring both the vertical and circumferential strains on the cylindrical container walls under vertical loading in a separate confined compression tester - the K0 tester, to determine the lateral pressure ratio. Discrete Element Method simulations of both experiments were carried out and the predictions were compared with the experimental observations. A recently developed DEM contact model for cohesive solids, an Elasto-Plastic Adhesive model, was used. This particle contact model uses hysteretic non-linear loading and unloading paths and an adhesion parameter which is a function of the maximum contact overlap. The model parameters for the simulations are phenomenologically based to reproduce the key bulk characteristics exhibited by the solid. The simulation results show a good agreement in capturing the stress history dependent behaviour depicted by the flow function of the cohesive iron ore fines while also providing a reasonably good match for the lateral pressure ratio observed during the confined compression K0 tests. This demonstrates the potential for the DEM model to be used in the simulation of bulk handling applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many powders and particulate solids are cohesive in nature and the strength often exhibits dependence on the consolidation stress. As a result, the stress history in the material leading up to a handling scenario needs to be considered when evaluating its handleability. This paper outlines the development of a DEM contact model accounting for plasticity and adhesion force, which is shown to be suitable for modelling the stress history dependent cohesive strength. The model was used to simulate the confined consolidation and the subsequent unconfined loading of iron ore fines with particle sizes up to 1.18mm. The predicted flow function was found to be comparable to the experimental results. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an analytical solution for the solid stresses in a silo with an internal tube. The research was conducted to support the design of a group of full scale silos with large inner concrete tubes. The silos were blasted and formed out of solid rock underground for storing iron ore pellets. Each of these silos is 40m in diameter and has a 10m diameter concrete tube with five levels of openings constructed at the centre of each rock silo. A large scale model was constructed to investigate the stress regime for the stored pellets and to evaluate the solids flow pattern and the loading on the concrete tube. This paper focuses on the development of an analytical solution for stresses in the iron ore pellets in the silo and the effect of the central tube on the stress regimes. The solution is verified using finite element analysis before being applied to analyse stresses in the solid in the full scale silo and the effect of the size of the tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Received for publication October 31, 2002. Design and operation of Fe0 permeable reactive barriers (PRBs) can be improved by understanding the long-term mineralogical transformations that occur within PRBs. Changes in mineral precipitates, cementation, and corrosion of Fe0 filings within an in situ pilot-scale PRB were examined after the first 30 months of operation and compared with results of a previous study of the PRB conducted 15 months earlier using X-ray diffraction and scanning electron microscopy employing energy dispersive X-ray and backscatter electron analyses. Iron (oxy)hydroxides, aragonite, and maghemite and/or magnetite occurred throughout the cores collected 30 mo after installation. Goethite, lepidocrocite, mackinawite, aragonite, calcite, and siderite were associated with oxidized and cemented areas, while green rusts were detected in more reduced zones. Basic differences from our last detailed investigation include (i) mackinawite crystallized from amorphous FeS, (ii) aragonite transformed into calcite, (iii) akaganeite transformed to goethite and lepidocrocite, (iv) iron (oxy)hydroxides and calcium and iron carbonate minerals increased, (v) cementation was greater in the more recent study, and (vi) oxidation, corrosion, and disintegration of Fe0 filings were greater, especially in cemented areas, in the more recent study. If the degree of corrosion and cementation that was observed from 15 to 30 mo after installation continues, certain portions of the PRB (i.e., up-gradient entrance of the ground water to the Fe0 section of the PRB) may last less than five more years, thus reducing the effectiveness of the PRB to mitigate contaminants. Abbreviations: EDX, energy dispersive X-ray • Fe0, zerovalent iron • PRB, permeable reactive barrier • SEM, scanning electron microscopy • XRD, X-ray diffraction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permeable reactive barriers (PRBs) of zero-valent iron (Fe0) are increasingly being used to remediate contaminated ground water. Corrosion of Fe0 filings and the formation of precipitates can occur when the PRB material comes in contact with ground water and may reduce the lifespan and effectiveness of the barrier. At present, there are no routine procedures for preparing and analyzing the mineral precipitates from Fe0 PRB material. These procedures are needed because mineralogical composition of corrosion products used to interpret the barrier processes can change with iron oxidation and sample preparation. The objectives of this study were (i) to investigate a method of preparing Fe0 reactive barrier material for mineralogical analysis by X-ray diffraction (XRD), and (ii) to identify Fe mineral phases and rates of transformations induced by different mineralogical preparation techniques. Materials from an in situ Fe0 PRB were collected by undisturbed coring and processed for XRD analysis after different times since sampling for three size fractions and by various drying treatments. We found that whole-sample preparation for analysis was necessary because mineral precipitates occurred within the PRB material in different size fractions of the samples. Green rusts quickly disappeared from acetone-dried samples and were not present in air-dried and oven-dried samples. Maghemite/magnetite content increased over time and in oven-dried samples, especially after heating to 105°C. We conclude that care must be taken during sample preparation of Fe0 PRB material, especially for detection of green rusts, to ensure accurate identification of minerals present within the barrier system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zero-valent iron (Fe0)-based permeable reactive barriertreatment has been generating great interest for passivegroundwater remediation, yet few studies have paid particularattention to the microbial activity and characteristics withinand in the vicinity of the Fe0-barrier matrix. The presentstudy was undertaken to evaluate the microbial population andcommunity composition in the reducing zone of influence byFe0 corrosion in the barrier at the Oak Ridge Y-12 Plantsite. Both phospholipid fatty acids and DNA analyses were usedto determine the total microbial population and microbialfunctional groups, including sulfate-reducing bacteria,denitrifying bacteria, and methanogens, in groundwater andsoil/iron core samples. A diverse microbial community wasidentified in the strongly reducing Fe0 environment despitea relatively high pH condition within the Fe0 barrier (up topH 10). In comparison with those found in the backgroundsoil/groundwater samples, the enhanced microbial populationranged from 1 to 3 orders of magnitude and appeared to increase from upgradient of the barrier to downgradient soil. Inaddition, microbial community composition appeared to change overtime, and the bacterial types of microorganismsincreased consistently as the barrier aged. DNA analysisindicated the presence of sulfate-reducing and denitrifyingbacteria in the barrier and its surrounding soil. However, theactivity of methanogens was found to be relatively low,presumably as a result of the competition by sulfate/metal-reducing bacteria and denitrifying bacteria because of the unlimited availability of sulfate and nitrate in the site groundwater. Results of this study provide evidenceof a diverse microbial population within and in the vicinity ofthe iron barrier, although the important roles of microbial activity, either beneficially or detrimentally, on the longevityand enduring efficiency of the Fe0 barriers are yet to be evaluated.