130 resultados para Inhibitors of platelet aggregation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Convergent biochemical and genetic evidence suggests that the formation of alpha-synuclein (alpha-syn) protein deposits is an important and, probably, seminal step in the development of Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). It has been reported that transgenic animals overexpressing human alpha-syn develop lesions similar to those found in the brain in PD, together with a progressive loss of dopaminergic cells and associated abnormalities of motor function. Inhibiting and/or reversing alpha-syn self-aggregation could, therefore, provide a novel approach to treating the underlying cause of these diseases. We synthesized a library of overlapping 7-mer peptides spanning the entire alpha-syn sequence, and identified amino acid residues 64-100 of alpha-syn as the binding region responsible for its self-association. Modified short peptides containing alpha-syn amino acid sequences from part of this binding region (residues 69-72), named alpha-syn inhibitors (ASI), were found to interact with full-length alpha-syn and block its assembly into both early oligomers and mature amyloid-like fibrils. We also developed a cell-permeable inhibitor of alpha-syn aggregation (ASID), using the polyarginine peptide delivery system. This ASID peptide was able to inhibit the DNA damage induced by Fe(II) in neuronal cells transfected with alpha-syn(A53T), a familial PD-associated mutation. ASI peptides without this delivery system did not reverse levels of Fe(II)-induced DNA damage. Furthermore, the ASID peptide increased (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An abundance of genetic, histopathological, and biochemical evidence has implicated the neuronal protein, alpha-synuclein (alpha-syn) as a key player in the development of several neurodegenerative diseases, the so-called synucleinopathies, of which Parkinson's disease (PD) is the most prevalent. Development of disease appears to be linked to events that increase the intracellular concentration of alpha-syn or cause its chemical modification, either of which can accelerate the rate at which it forms aggregates. Examples of such events include increased copy number of genes, decreased rate of degradation via the proteasome or other proteases, or altered forms of alpha-syn, such as truncations, missense mutations, or chemical modifications by oxidative reactions. Aggregated forms of the protein, especially newly formed soluble aggregates, are toxic to cells, so that one therapeutic strategy would be to reduce the rate at which such oligomerization occurs. We have therefore designed several peptides and also identified small molecules that can inhibit alpha-syn oligomerization and toxicity in vitro. These compounds could serve as lead compounds for the design of new drugs for the treatment of PD and related disorders in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three novel dinucleotide analogues of nicotinamide adenine dinucleotide (NAD+) have been synthesised from -ribonolactone. These compounds incorporate a thiophene moiety in place of nicotinamide and are hydrolytically stable. They have been evaluated as inhibitors of adenosine diphosphate ribosyl cyclase, glutamate dehydrogenase and Sir2 acyltransferase activities. Enzyme specificity and a high level of inhibition was observed for the dehydrogenase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and thermodynamic properties of spherical particles carrying classical spins are investigated by Monte Carlo simulations. The potential energy is the sum of short range, purely repulsive pair contributions, and spin-spin interactions. These last are of the dipole-dipole form, with however, a crucial change of sign. At low density and high temperature the system is a homogeneous fluid of weakly interacting particles and short range spin correlations. With decreasing temperature particles condense into an equilibrium population of free floating vesicles. The comparison with the electrostatic case, giving rise to predominantly one-dimensional aggregates under similar conditions, is discussed. In both cases condensation is a continuous transformation, provided the isotropic part of the interatomic potential is purely repulsive. At low temperature the model allows us to investigate thermal and mechanical properties of membranes. At intermediate temperatures it provides a simple model to investigate equilibrium polymerization in a system giving rise to predominantly two-dimensional aggregates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coronavirus main protease, Mpro, is considered to be a major target for drugs suitable for combating coronavirus infections including severe acute respiratory syndrome (SARS). An HPLC-based screening of electrophilic compounds that was performed to identify potential Mpro inhibitors revealed etacrynic acid tert-butylamide (6a) as an effective nonpeptidic inhibitor. Docking studies suggested a binding mode in which the phenyl ring acts as a spacer bridging the inhibitor's activated double bond and its hydrophobic tert-butyl moiety. The latter is supposed to fit into the S4 pocket of the target protease. Furthermore, these studies revealed etacrynic acid amide (6b) as a promising lead for nonpeptidic active-site-directed Mpro inhibitors. In a fluorimetric enzyme assay using a novel fluorescence resonance energy transfer (FRET) pair labeled substrate, compound 6b showed a Ki value of 35.3 M. Since the novel lead compound does not target the S1', S1, and S2 subsites of the enzyme's substrate-binding pockets, there is room for improvement that underlines the lead character of compound 6b.