39 resultados para ION TRANSFER KINETICS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the anodic oxidation of several arenes and anthracenes within room-temperature ionic liquids (RTILs). In particular, the heterogeneous electron-transfer rates (k(0)) for substituted anthracenes and arenes are also investigated in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(2)mim][NTf2]) and found not to obey the outer-sphere Marcus-type behavior of these compounds in contrast to the behavior in traditional organic solvents,in particular the predictions for k(0) with molecular size and solvent static dielectric constant. To obtain the electron-transfer rate for 9-phenylanthracene, the dimerization and heterogeneous electron-transfer kinetics of its electrogenerated radical cations is studied in [C(2)mim][NTf2] and eight other RTILs and are both found to be largely independent of the solution viscosity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The potentiometric and AC impedance characteristics of all solid-state sodium-selective electrodes based on planar screen-printed Ag/AgCl electrodes are described. Two solid-state designs have been investigated. The first was based on the deposition of a sodium-selective PVC membrane directly on top of a screen-printed Ag/AgCl electrode, The second design included a NaCl doped hydrogel layer, between the PVC and Ag\AgCl layers. The hydrogel provides a mechanism to relieve any blockage to charge transfer occurring when PVC membranes are used directly on top of Ag/AgCl and also improves adhesion between the two layers. Results suggest the electrodes display Fast ion exchange kinetics, low noise and drift. The performance compares favorably to that of a conventional ion-selective electrode with internal filling solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer based carbon aerogels were prepared by synthesis of a resorcinol formaldehyde gel followed by pyrolysis at 1073K under Ar and activation of the resultant carbon under CO2 at different temperatures. The prepared carbon aerogels were used as active materials in the preparation of cathode electrodes for lithium oxygen cells and the electrochemical performance of the cells was evaluated by galvanostatic charge/discharge cycling and electrochemical impedance measurements. It was shown that the storage capacity and discharge voltage of a Li/O2 cell strongly depend on the porous structure of the carbon used in cathode. EIS results also showed that the shape and value of the resistance in the impedance spectrum of a Li/O2 cell are strongly affected by the porosity of carbon used in the cathode. Porosity changes due to the build up of discharge products hinder the oxygen and lithium ion transfer into the electrode, resulting in a gradual increase in the cell impedance with cycling. The discharge capacity and cycle life of the battery decrease significantly as its internal resistance increases with charge/discharge cycling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transient absorption spectroscopy (TAS) has been used to study the interfacial electron-transfer reaction between photogenerated electrons in nanocrystalline titanium dioxide (TiO2) films and molecular oxygen. TiO2 films from three different starting materials (TiO2 anatase colloidal paste and commercial anatase/rutile powders Degussa TiO2 P25 and VP TiO2 P90) have been investigated in the presence of ethanol as a hole scavenger. Separate investigations on the photocatalytic oxygen consumption by the films have also been performed with an oxygen membrane polarographic detector. Results show that a correlation exists between the electron dynamics of oxygen consumption observed by TAS and the rate of oxygen consumption through the photocatalytic process. The highest activity and the fastest oxygen reduction dynamics were observed with films fabricated from anatase TiO2 colloidal paste. The use of TAS as a tool for the prediction of the photocatalytic activities of the materials is discussed. TAS studies indicate that the rate of reduction of molecular oxygen is limited by interfacial electron-transfer kinetics rather than by the electron trapping/detrapping dynamics within the TiO2 particles.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A selected ion flow tube study of the reactions of a series of gas-phase atomic cations (S+, Xe+, O+, Kr+, N+, Ar+ and Ne+) and molecular ions (SF n+ (n = 1-5), CFn+ (n = 1-3), CF2Cl+, H3O+, NO+, N 2O+, CO2+, CO+, and N2+) spanning a large range of recombination energies (6.3-21.6 eV), with acetone, 1,1,1-trifluoroacetone, and hexafluoroacetone has been undertaken with the objective of exploring the nature of the reaction ion chemistry as the methyl groups in acetone are substituted for CF3. The reaction rate coefficients and product ion branching ratios for all 66 reactions, measured at 298 K, are reported. The experimental reaction rate coefficients are compared to theoretically calculated collisional values. Several distinct reaction processes were observed among the large number of reactions studied, including charge transfer (non-dissociative and dissociative), abstraction, ion-molecule associations and, in the case of the reactions involving the reagent ion H3O+, proton transfer

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Integrated "ICT chromophore-receptor" systems show ion-induced shifts in their electronic absorption spectra. The wavelength of observation can be used to reversibly configure the system to any of the four logic operations permissible with a single input (YES, NOT, PASS 1, PASS 0), under conditions of ion input and transmittance output. We demonstrate these with dyes integrated into Tsien's calcium receptor, 1-2. Applying multiple ion inputs to 1-2 also allows us to perform two- or three-input OR or NOR operations. The weak fluorescence output of 1 also shows YES or NOT logic depending on how it is configured by excitation and emission wavelengths. Integrated "receptor(1)-ICT chromophore-receptor(2)" systems 3-5 selectively target two ions into the receptor terminals. The ion-induced transmittance output of 3-5 can also be configured via wavelength to illustrate several logic types including, most importantly, XOR. The opposite effects of the two ions on the energy of the chromophore excited state is responsible for this behaviour. INHIBIT and REVERSE IMPLICATION are two of the other logic types seen here. Integration of XOR logic with a preceding OR operation can be arranged by using three ion inputs. The fluorescence output of these systems can be configured via wavelength to display INHIBIT or NOR logic under two-input conditions. The superposition or multiplicity of logic gate configurations is an unusual consequence of the ability to simultaneously observe multiple wavelengths.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of electron correlation and second-order terms on theoretical total cross sections of transfer ionization in collisions of the helium atom with fast H+, He2+ and Li3+ ions are studied and reported. The total cross sections are calculated using highly correlated wavefunctions with expansion of the transition amplitude in the Born series through the second order. The results of these calculations are in sensible agreement with experimental data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present ab initio quantum chemistry calculations for elastic scattering and the radiative charge transfer reaction process and collision rates for trapped ytterbium ions immersed in a quantum degenerate rubidium vapor.
The collision of the ion (or ions) with the quasiatom is the key mechanism to transfer quantum coherences between the systems. We use first-principles
quantum chemistry codes to obtain the potential surfaces and coupling terms for the two-body interaction of Yb^+ with Rb. We find that the low energy collision has an inelastic radiative charge transfer process in agreement with recent experiments.
The charge transfer cross section agrees well with the semiclassical Langevin model at higher energies but is dominated by resonances at submillikelvin temperatures.