3 resultados para IMAGE-POTENTIAL STATES
Resumo:
Recent studies have shown that cancer risk related to overweight and obesity is mediated by time and might be better approximated by using life years lived with excess weight. In this study we aimed to assess the impact of overweight duration and intensity in older adults on the risk of developing different forms of cancer. Study participants from seven European and one US cohort study with two or more weight assessments during follow-up were included (n = 329,576). Trajectories of body mass index (BMI) across ages were estimated using a quadratic growth model; overweight duration (BMI ≥ 25) and cumulative weighted overweight years were calculated. In multivariate Cox models and random effects analyses, a longer duration of overweight was significantly associated with the incidence of obesity-related cancer [overall hazard ratio (HR) per 10-year increment: 1.36; 95 % CI 1.12-1.60], but also increased the risk of postmenopausal breast and colorectal cancer. Additionally accounting for the degree of overweight further increased the risk of obesity-related cancer. Risks associated with a longer overweight duration were higher in men than in women and were attenuated by smoking. For postmenopausal breast cancer, increased risks were confined to women who never used hormone therapy. Overall, 8.4 % of all obesity-related cancers could be attributed to overweight at any age. These findings provide further insights into the role of overweight duration in the etiology of cancer and indicate that weight control is relevant at all ages. This knowledge is vital for the development of effective and targeted cancer prevention strategies.
Resumo:
OBJECTIVES: Radiotherapy is planned to achieve the optimal physical dose distribution to the target tumour volume whilst minimising dose to the surrounding normal tissue. Recent in vitro experimental evidence has demonstrated an important role for intercellular communication in radiobiological responses following non-uniform exposures. This study aimed to model the impact of these effects in the context of techniques involving highly modulated radiation fields or spatially fractionated treatments such as GRID therapy.
METHODS: Using the small animal radiotherapy research platform (SARRP) as a key enabling technology to deliver precision imaged-guided radiotherapy, it is possible to achieve spatially modulated dose distributions that model typical clinical scenarios. In this work, we planned uniform and spatially fractionated dose distributions using multiple isocentres with beam sizes of 0.5 - 5 mm to obtain 50% volume coverage in a subcutaneous murine tumour model, and applied a model of cellular response that incorporates intercellular communication to assess the potential impact of signalling effects with different ranges.
RESULTS: Models of GRID treatment plans which incorporate intercellular signalling showed increased cell killing within the low dose region. This results in an increase in the Equivalent Uniform Dose (EUD) for GRID exposures compared to standard models, with some GRID exposures being predicted to be more effective than uniform delivery of the same physical dose.
CONCLUSIONS: This study demonstrates the potential impact of radiation induced signalling on tumour cell response for spatially fractionated therapies and identifies key experiments to validate this model and quantify these effects in vivo.
ADVANCES IN KNOWLEDGE: This study highlights the unique opportunities now possible using advanced preclinical techniques to develop a foundation for biophysical optimisation in radiotherapy treatment planning.
Resumo:
The mismatch between human capacity and the acquisition of Big Data such as Earth imagery undermines commitments to Convention on Biological Diversity (CBD) and Aichi targets. Artificial intelligence (AI) solutions to Big Data issues are urgently needed as these could prove to be faster, more accurate, and cheaper. Reducing costs of managing protected areas in remote deep waters and in the High Seas is of great importance, and this is a realm where autonomous technology will be transformative.