192 resultados para IIN SUPERNOVA
Resumo:
We present results from the first high-resolution, high signal-to-noise ratio spectrum of SN 2002ic. The resolved Ha line has a P Cygni-type profile, clearly demonstrating the presence of a dense, slow-moving (~100 km s-1) outflow. We have additionally found a huge near-infrared excess, hitherto unseen in Type Ia supernovae. We argue that this is due to an infrared light-echo arising from the pre-existing dusty circumstellar medium. We deduce a circumstellar medium mass probably exceeding 0.3 Msolar produced by a mass-loss rate greater than several times 10-4 Msolar yr-1. For the progenitor, we favour a single-degenerate system where the companion is a post-asymptotic giant branch star. As a by-product of our optical data, we are able to provide a firm identification of the host galaxy of SN 2002ic.
Resumo:
An optical photometric and spectroscopic analysis of the slowly-evolving type IIn SN 2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He i 5875 line, not usually detected in type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow Ha P-Cygni profile, the absorption component of which has a width of 128 km s-1. This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.
Resumo:
We report on new VLT optical spectroscopic and multiwavelength archival observations of SN 1996cr, a previously identified ultraluminous X-ray source known as Circinus galaxy X-2. Our optical spectrum confirms SN 1996cr as a bona fide Type IIn supernova, while archival imaging from the Anglo-Australian Telescope archive isolates the explosion date to between 1995 February 28 and 1996 March 16. SN 1996cr is one of the closest SNe (approximate to 3.8 Mpc) in the last several decades, and in terms of flux ranks among the brightest radio and X-ray SNe ever detected. The wealth of optical, X-ray, and radio observations that exist for this source provide relatively detailed constraints on its postexplosion expansion and progenitor history, including a preliminary angular size constraint from VLBI. Archival X-ray and radio data imply that the progenitor of SN 1996cr evacuated a large cavity just prior to exploding: the blast wave likely spent similar to 1-2 yr in relatively uninhibited expansion before eventually striking the dense circumstellar material which surrounds SN 1996cr. The X-ray and radio emission, which trace the progenitor mass-loss rate, have respectively risen by a factor of greater than or similar to 2 and remained roughly constant over the past 7 years. This behavior is reminiscent of the late rise of SN 1987A, but 1000 times more luminous and much more rapid to onset. SN 1996cr may likewise provide us with a younger example of SN 1978K and SN 1979C, both of which exhibit flat X-ray evolution at late times. Complex oxygen line emission hints at a possible concentric shell or ringlike structure. The discovery of SN 1996cr suggests that a substantial fraction of the closest SNe observed in the last several decades have occurred in wind-blown bubbles, and argues for the phenomena being widespread.
Resumo:
We present optical photometry and spectra of the superluminous Type II/IIn supernova (SN) CSS121015:004244+132827 (z = 0.2868) spanning epochs from -30 d (rest frame) to more than 200 d after maximum. CSS121015 is one of the more luminous SNe ever found and one of the best observed. The photometric evolution is characterized by a relatively fast rise to maximum (~40 d in the SN rest frame), and by a linear post-maximum decline. The light curve shows no sign of a break to an exponential tail. A broad Hα is first detected at ~+40 d (rest frame). Narrow, barely resolved Balmer and [O iii] 5007 Å lines, with decreasing strength, are visible along the entire spectral evolution. The spectra are very similar to other superluminous supernovae (SLSNe) with hydrogen in their spectrum, and also to SN 2005gj, sometimes considered Type Ia interacting with H-rich circumstellar medium. The spectra are also similar to a subsample of H-deficient SLSNe. We propose that the properties of CSS121015 are consistent with the interaction of the ejecta with a massive, extended, opaque shell, lost by the progenitor decades before the final explosion, although a magnetar-powered model cannot be excluded. Based on the similarity of CSS121015 with other SLSNe (with and without H), we suggest that the shocked-shell scenario should be seriously considered as a plausible model for both types of SLSN. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
We present contemporaneous optical and infrared (IR) photometric observations of the Type IIn SN 1998S covering the period between 11 and 146 d after discovery. The IR data constitute the first ever IR light curves of a Type IIn supernova. We use blackbody and spline fits to the photometry to examine the luminosity evolution. During the first 2-3 months, the luminosity is dominated by the release of shock-deposited energy in the ejecta. After similar to 100 d the luminosity is powered mostly by the deposition of radioactive decay energy from 0.15 +/-0.05 M-. of Ni-56 which was produced in the explosion. We also report the discovery of an astonishingly high IR excess, K-L'=2.5, that was present at day 130. We interpret this as being due to thermal emission from dust grains in the vicinity of the supernova. We argue that to produce such a high IR luminosity so soon after the explosion, the dust must be pre-existing and so is located in the circumstellar medium of the progenitor. The dust could be heated either by the UV/optical flash (IR echo) or by the X-rays from the interaction of the ejecta with the circumstellar material.
Resumo:
Using imaging from the Pan-STARRS1 survey, we identify a precursor outburst at epochs 287 and 170 days prior to the reported explosion of the purported Type IIn supernova (SN) 2011ht. In the Pan-STARRS data, a source coincident with SN 2011ht is detected exclusively in the \zps\ and \yps-bands. An absolute magnitude of M$_z\simeq$-11.8 suggests that this was an outburst of the progenitor star. Unfiltered, archival Catalina Real Time Transient survey images also reveal a coincident source from at least 258 to 138 days before the main event. We suggest that the outburst is likely to be an intrinsically red eruption, although we cannot conclusively exclude a series of erratic outbursts which were observed only in the redder bands by chance. This is only the fourth detection of an outburst prior to a claimed SN, and lends credence to the possibility that many more interacting transients have pre-explosion outbursts, which have been missed by current surveys.
Resumo:
We present optical observations of the peculiar Type Ibn supernova (SN Ibn) OGLE-2012-SN-006, discovered and monitored by the Optical Gravitational Lensing Experiment-IV survey, and spectroscopically followed by Public ESO Spectroscopic Survey of Transient Objects (PESSTO) at late phases. Stringent pre-discovery limits constrain the explosion epoch with fair precision to JD = 245 6203.8 +/- 4.0. The rise time to the I-band light-curve maximum is about two weeks. The object reaches the peak absolute magnitude M-I = -19.65 +/- 0.19 on JD = 245 6218.1 +/- 1.8. After maximum, the light curve declines for about 25 d with a rate of 4 mag (100 d)(-1). The symmetric I-band peak resembles that of canonical Type Ib/c supernovae (SNe), whereas SNe Ibn usually exhibit asymmetric and narrower early-time light curves. Since 25 d past maximum, the light curve flattens with a decline rate slower than that of the Co-56-Fe-56 decay, although at very late phases it steepens to approach that rate. However, other observables suggest that the match with the Co-56 decay rate is a mere coincidence, and the radioactive decay is not the main mechanism powering the light curve of OGLE-2012-SN-006. An early-time spectrum is dominated by a blue continuum, with only a marginal evidence for the presence of He I lines marking this SN type. This spectrum shows broad absorptions bluewards than 5000 angstrom, likely O II lines, which are similar to spectral features observed in superluminous SNe at early epochs. The object has been spectroscopically monitored by PESSTO from 90 to 180 d after peak, and these spectra show the typical features observed in a number of SN 2006jc-like events, including a blue spectral energy distribution and prominent and narrow (v(FWHM) approximate to 1900 km s(-1)) He I emission lines. This suggests that the ejecta are interacting with He-rich circumstellar material. The detection of broad (10(4) km s(-1)) O I and Ca II features likely produced in the SN ejecta (including the [OI] lambda lambda 6300,6364 doublet in the latest spectra) lends support to the interpretation of OGLE-2012-SN-006 as a core-collapse event.
Resumo:
We present Hubble Space Telescope (HST) rest-frame ultraviolet imaging of the host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including 11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the superb angular resolution of HST, we characterize the galaxies' morphological properties, sizes, and star formation rate (SFR) densities. We determine the supernova (SN) locations within the host galaxies through precise astrometric matching and measure physical and host-normalized offsets as well as the SN positions within the cumulative distribution of UV light pixel brightness. We find that the host galaxies of H-poor SLSNe are irregular, compact dwarf galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived SFR densities are high ([Sigma(SFR)] similar or equal to 0.1M(circle dot) yr(-1) kpc(-1)), suggesting that SLSNe form in overdense environments. Their locations trace the UV light of their host galaxies, with a distribution intermediate between that of long-duration gamma-ray bursts (LGRBs; which are strongly clustered on the brightest regions of their hosts) and a uniform distribution (characteristic of normal core-collapse SNe), though cannot be statistically distinguished from either with the current sample size. Taken together, this strengthens the picture that SLSN progenitors require different conditions than those of ordinary core-collapse SNe to form and that they explode in broadly similar galaxies as do LGRBs. If the tendency for SLSNe to be less clustered on the brightest regions than are LGRBs is confirmed by a larger sample, this would indicate a different, potentially lower-mass progenitor for SLSNe than LRGBs.
Resumo:
We present optical photometry and spectroscopy of the optical transient SN 2011A. Our data span 140 days after discovery including BVRI u′g′r′i′z′ photometry and 11 epochs of optical spectroscopy. Originally classified as a type IIn supernova (SN IIn) due to the presence of narrow Hα emission, this object shows exceptional characteristics. First, the light curve shows a double plateau, a property only observed before in the impostor SN 1997bs. Second, SN 2011A has a very low luminosity (MV=-15.72), placing it between normal luminous SNe IIn and SN impostors. Third, SN 2011A shows low velocity and high equivalent width absorption close to the sodium doublet, which increases with time and is most likely of circumstellar origin. This evolution is also accompanied by a change in line profile; when the absorption becomes stronger, a P Cygni profile appears. We discuss SN 2011A in the context of interacting SNe IIn and SN impostors, which appears to confirm the uniqueness of this transient. While we favor an impostor origin for SN 2011A, we highlight the difficulty in differentiating between terminal and non-terminal interacting transients.
Resumo:
We report the results of the photometric and spectroscopic monitoring campaign of the transient SN 2007sv. The observables are similar to those of Type IIn supernovae, a well-known class of objects whose ejecta interact with pre-existing circumstellar material (CSM). The spectra show a blue continuum at early phases and prominent Balmer lines in emission; however, the absolute magnitude at the discovery of SN 2007sv (M-R=-14.25 +/- 0.38) indicate it to be most likely a supernova impostor. This classification is also supported by the lack of evidence in the spectra of very high velocity material as expected in supernova ejecta. In addition, we find no unequivocal evidence of broad lines of alpha- and/or Fe-peak elements. The comparison with the absolute light curves of other interacting objects (including Type IIn supernovae) highlights the overall similarity with the prototypical impostor SN 1997bs. This supports our claim that SN 2007sv was not a genuine supernova, and was instead a supernova impostor, most likely similar to the major eruption of a luminous blue variable.
Resumo:
We present optical observations of the peculiar stripped-envelope supernovae (SNe) LSQ12btw and LSQ13ccw discovered by the La Silla-QUEST survey. LSQ12btw reaches an absolute peak magnitude of M-g = -19.3 +/- 0.2, and shows an asymmetric light curve. Stringent pre-discovery limits constrain its rise time to maximum light to less than 4 d, with a slower post-peak luminosity decline, similar to that experienced by the prototypical SN Ibn 2006jc. LSQ13ccw is somewhat different: while it also exhibits a very fast rise to maximum, it reaches a fainter absolute peak magnitude (M-g =-18.4 +/- 0.2), and experiences an extremely rapid post-peak decline similar to that observed in the peculiar SN Ib 2002bj. A stringent pre-discovery limit and an early marginal detection of LSQ13ccw allow us to determine the explosion time with an uncertainty of +/- 1 d. The spectra of LSQ12btw show the typical narrow He I emission lines characterizing Type Ibn SNe, suggesting that the SN ejecta are interacting with He-rich circumstellar material. The He I lines in the spectra of LSQ13ccw exhibit weak narrow emissions superposed on broad components. An unresolved H alpha line is also detected, suggesting a tentative Type Ibn/IIn classification. As for other SNe Ibn, we argue that LSQ12btw and LSQ13ccw likely result from the explosions of Wolf-Rayet stars that experienced instability phases prior to core collapse. We inspect the host galaxies of SNe Ibn, and we show that all of them but one are hosted in spiral galaxies, likely in environments spanning a wide metallicity range.
Resumo:
We present photometric and spectroscopic observations of SN 2013fc, a bright type II supernova (SN) in a circumnuclear star-forming ring in the luminous infrared galaxy ESO 154-G010, observed as part of the Public ESO Spectroscopic Survey of Transient Objects. SN 2013fc is both photometrically and spectroscopically similar to the well-studied type IIn SN 1998S and to the bright type II-L SN 1979C. It exhibits an initial linear decline, followed by a short plateau phase and a tail phase with a decline too fast for 56Co decay with full γ -ray trapping. Initially, the spectrum was blue and featureless. Later on, a strong broad (~8000 km s-1) H α emission profile became prominent. We apply a STARLIGHT stellar population model fit to the SN location (observed when the SN had faded) to estimate a high extinction of AV = 2.9 ± 0.2 mag and an age of 10+3 -2 Myr for the underlying cluster.We compare the SN to SNe 1998S and 1979C and discuss its possible progenitor star considering the similarities to these events. With a peak brightness of B = -20.46 ± 0.21 mag, SN 2013fc is 0.9 mag brighter than SN 1998S and of comparable brightness to SN 1979C.We suggest that SN 2013fc was consistent with a massive red supergiant (RSG) progenitor. Recent mass loss probably due to a strong RSG wind created the circumstellar matter illuminated through its interaction with the SN ejecta. We also observe a near-infrared excess, possibly due to newly condensed dust.
Resumo:
We present photometric and spectroscopic data of the Type II-P supernova (SN II-P) 2003gd, which was discovered in M74 close to the end of its plateau phase. SN 2003gd is the first Type II supernova ( SN) to have a directly confirmed red supergiant ( RSG) progenitor. We compare SN 2003gd to SN 1999 em, a similar SN II-P, and estimate an explosion date of 2003 March 18. We determine a reddening towards the SN of E(B-V) = 0.14 +/- 0.06, using three different methods. We also calculate three new distances to M74 of 9.6 +/- 2.8, 7.7 +/- 1.7 and 9.6 +/- 2.2 Mpc. The former was estimated using the standard candle method (SCM), for Type II supernovae (SNe II), and the latter two using the brightest supergiants method (BSM). When combined with existing kinematic and BSM distance estimates, we derive a mean value of 9.3 +/- 1.8 Mpc. SN 2003gd was found to have a lower tail luminosity compared with other normal Type II-P supernovae ( SNe II-P) bringing into question the nature of this SN. We present a discussion concluding that this is a normal SN II-P, which is consistent with the observed progenitor mass of 8(-2)(+4) M-circle dot.
Resumo:
We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8+4-2 solar masses. This confirms both stellar evolution models and supernova theories predicting that cool red supergiants are the immediate progenitor stars of type II-plateau supernovae.
Resumo:
The massive star that underwent a collapse of its core to produce supernova (SN)1993J was subsequently identified as a non-variable red supergiant star in images of the galaxy M81 taken before explosion(1, 2). It showed an excess in ultraviolet and B-band colours, suggesting either the presence of a hot, massive companion star or that it was embedded in an unresolved young stellar association1. The spectra of SN1993J underwent a remarkable transformation from the signature of a hydrogen-rich type II supernova to one of a helium-rich (hydrogen-deficient) type Ib(3, 4). The spectral and photometric peculiarities were best explained by models in which the 13�20 solar mass supergiant had lost almost its entire hydrogen envelope to a close binary companion(5, 6, 7), producing a 'type IIb' supernova, but the hypothetical massive companion stars for this class of supernovae have so far eluded discovery. Here we report photometric and spectroscopic observations of SN1993J ten years after the explosion. At the position of the fading supernova we detect the unambiguous signature of a massive star: the binary companion to the progenitor.