69 resultados para Hormone parathyroïdienne


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: We investigated the potential for improvement in disease control by use of autologous peripheral blood stem cell transplant (PBSCT) to permit administration of high activities of 186Re-hydroxyethylidene diphosphonate (HEDP) in patients with progressive hormone-refractory prostate cancer (HRPC).

Methods: Eligible patients had progressive HRPC metastatic to bone, good performance status and minimal soft tissue disease. Patients received 5,000 MBq of 186Re-HEDP i.v., followed 14 days later by PBSCT. Response was assessed using PSA, survival, pain scores and quality of life.

Results: Thirty-eight patients with a median age of 67 years (range 50–77) and a median PSA of 57 ng/ml (range 4–3,628) received a median activity of 4,978 MBq 186Re-HEDP (range 4,770–5,100 MBq). The most serious toxicity was short-lived grade 3 thrombocytopenia in 8 (21%) patients. The median survival of the group is 21 months (95%CI 18–24 months) with Kaplan-Meier estimated 1- and 2-year survival rates of 83% and 40% respectively. Thirty-one patients (81%, 95% CI 66–90%) had stable or reduced PSA levels 3 months post therapy while 11 (29%, 95% CI 15–49%) had PSA reductions of >50% lasting >4 weeks. Quality of life measures were stable or improved in 27 (66%) at 3 months.

Conclusion: We have shown that it is feasible and safe to deliver high-activity radioisotope therapy with PBSCT to men with metastatic HRPC. Response rates and survival data are encouraging; however, further research is needed to define optimal role of this treatment approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incretin hormones glucagon-like peptide-I (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are physiological gut peptides with insulin-releasing and extrapancreatic glucoregulatory actions. Incretin analogues/mimetics activate GLP-I or GIP receptors whilst avoiding physiological inactivation by dipeptidyl peptidase 4 (DPP-4), and they represent one of the newest classes of antidiabetic drug. The first clinically approved GLP-1 mimetic for the treatment of type-2 diabetes is exenatide (Byetta/exendin) which is administered subcutaneously twice daily. Clinical trials of liraglutide, a GLP-1 analogue suitable for once-daily administration, are ongoing. A number of other incretin molecules are at earlier stages of development. This review discusses the various attributes of GLP-1 and GIP for diabetes treatment and summarises current clinical data. Additionally, it explores the therapeutic possibilities offered by preclinical agents, such as non-peptide GLP-1 mimetics, GLP-1/glucagon hybrid peptides, and specific GIP receptor antagonists.