55 resultados para Hernia ventral


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Male Sprague-Dawley rats were fitted with two cannulae in the VTA and one cannula in the NTS for co-administration of the mu-opioid receptoragonist DAMGO in one site and the opioid antagonist naltrexone in the other. Injection of DAMGO into the VTA or the NTS stimulated feeding. The increase in food intake after DAMGO injection into the VTA was decreased following injection of naltrexone into the NTS. Furthermore, the increase in food intake after DAMGO injection into the NTS was decreased following injection of naltrexone into the VTA. These results suggest an opioid-mediated feeding association between the VTA and NTS. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conserved habenular neural circuit relays cognitive information from the forebrain into the ventral mid- and hindbrain. In zebrafish, the bilaterally formed habenulae in the dorsal diencephalon are made up of the asymmetric dorsal and symmetric ventral habenular nuclei, which are homologous to the medial and lateral nuclei respectively, in mammals. These structures have been implicated in various behaviors related to the serotonergic/dopaminergic neurotransmitter system. The dorsal habenulae develop adjacent to the medially positioned pineal complex. Their precursors differentiate into two main neuronal subpopulations which differ in size across brain hemispheres as signals from left-sided parapineal cells influence their differentiation program. Unlike the dorsal habenulae and despite their importance, the ventral habenulae have been poorly studied. It is not known which genetic programs underlie their development and why they are formed symmetrically, unlike the dorsal habenulae. A main reason for this lack of knowledge is that the vHb origin has remained elusive to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work has suggested that there are specific deficits in dorsal stream processing in a variety of developmental disorders. Prader-Willi syndrome (PWS) is associated with two main genetic subtypes, deletion and disomy. Relative strengths in visual processing are shown in PWS, although these strengths may be specific to the deletion subtype. We investigated visual processing in PWS using an adapted Simon task which contrasted location (dorsal stream) and shape identity (ventral stream) tasks. Compared to a group of typically developing children, children with PWS deletion showed a greater degree of impairment in the dorsal stream task than in the ventral stream task, a pattern similar to that shown in a group of boys with Fragile-X syndrome. When matched on a measure of non-verbal ability, children with PWS disomy showed the opposite pattern with better performance in the location compared to the shape task, although these task performance asymmetries may have been linked to executive control processes. It is proposed that children with PWS deletion show a relative strength in visual processing in the ventral stream along with a specific deficit in dorsal stream processing. In contrast, children with PWS disomy show neither effect. (C) 2009 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activity of the immediate early gene c-fos was compared in rats with neurotoxic lesions of the anterior thalamic nuclei and in surgical controls. Fos levels were measured after rats had been placed in a novel room and allowed to run up and down preselected arms of a radial maze. An additional control group showed that in normal rats, this exposure to a novel room leads to a Fos increase in a number of structures, including the anterior thalamic nuclei and hippocampus. In contrast, rats with anterior thalamic lesions were found to have significantly less Fos-positive cells in an array of sites, including the hippocampus (dorsal and ventral), retrosplenial cortex, anterior cingulate cortex, and prelimbic cortex. These results show that anterior thalamic lesions disrupt multiple limbic brain regions, producing hypoactivity in sites associated in rats with spatial memory. Because many of the same sites are implicated in memory processes in humans (e.g., the hippocampus and retrosplenial cortex), this hypoactivity might contribute to diencephalic amnesia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid tryptophan (Trp) depletion (RTD) has been reported to cause deterioration in the quality of decision making and impaired reversal learning, while leaving attentional set shifting relatively unimpaired. These findings have been attributed to a more powerful neuromodulatory effect of reduced 5-HT on ventral prefrontal cortex (PFC) than on dorsolateral PFC. In view of the limited number of reports, the aim of this study was to independently replicate these findings using the same test paradigms. Healthy human subjects without a personal or family history of affective disorder were assessed using a computerized decision making/gambling task and the CANTAB ID/ED attentional set-shifting task under Trp-depleted (n=17; nine males and eight females) or control (n=15; seven males and eight females) conditions, in a double-blind, randomized, parallel-group design. There was no significant effect of RTD on set shifting, reversal learning, risk taking, impulsivity, or subjective mood. However, RTD significantly altered decision making such that depleted subjects chose the more likely of two possible outcomes significantly more often than controls. This is in direct contrast to the previous report that subjects chose the more likely outcome significantly less often following RTD. In the terminology of that report, our result may be interpreted as improvement in the quality of decision making following RTD. This contrast between studies highlights the variability in the cognitive effects of RTD between apparently similar groups of healthy subjects, and suggests the need for future RTD studies to control for a range of personality, family history, and genetic factors that may be associated with 5-HT function.