61 resultados para Geo-statistical model
Resumo:
This paper presents a new statistical signal reception model for shadowed body-centric communications channels. In this model, the potential clustering of multipath components is considered alongside the presence of elective dominant signal components. As typically occurs in body-centric communications channels, the dominant or line-of-sight (LOS) components are shadowed by body matter situated in the path trajectory. This situation may be further exacerbated due to physiological and biomechanical movements of the body. In the proposed model, the resultant dominant component which is formed by the phasor addition of these leading contributions is assumed to follow a lognormal distribution. A wide range of measured and simulated shadowed body-centric channels considering on-body, off-body and body-to-body communications are used to validate the model. During the course of the validation experiments, it was found that, even for environments devoid of multipath or specular reflections generated by the local surroundings, a noticeable resultant dominant component can still exist in body-centric channels where the user's body shadows the direct LOS signal path between the transmitter and the receiver.
Resumo:
The validation of variable-density flow models simulating seawater intrusion in coastal aquifers requires information about concentration distribution in groundwater. Electrical resistivity tomography (ERT) provides relevant data for this purpose. However, inverse modeling is not accurate because of the non-uniqueness of solutions. Such difficulties in evaluating seawater intrusion can be overcome by coupling geophysical data and groundwater modeling. First, the resistivity distribution obtained by inverse geo-electrical modeling is established. Second, a 3-D variable-density flow hydrogeological model is developed. Third, using Archie's Law, the electrical resistivity model deduced from salt concentration is compared to the formerly interpreted electrical model. Finally, aside from that usual comparison-validation, the theoretical geophysical response of concentrations simulated with the groundwater model can be compared to field-measured resistivity data. This constitutes a cross-validation of both the inverse geo-electrical model and the groundwater model.
[Comte, J.-C., and O. Banton (2007), Cross-validation of geo-electrical and hydrogeological models to evaluate seawater intrusion in coastal aquifers, Geophys. Res. Lett., 34, L10402, doi:10.1029/2007GL029981.]
Resumo:
This study presents a model based on partial least squares (PLS) regression for dynamic line rating (DLR). The model has been verified using data from field measurements, lab tests and outdoor experiments. Outdoor experimentation has been conducted both to verify the model predicted DLR and also to provide training data not available from field measurements, mainly heavily loaded conditions. The proposed model, unlike the direct measurement based DLR techniques, enables prediction of line rating for periods ahead of time whenever a reliable weather forecast is available. The PLS approach yields a very simple statistical model that accurately captures the physical performance of the conductor within a given environment without requiring a predetermination of parameters as required by many physical modelling techniques. Accuracy of the PLS model has been tested by predicting the conductor temperature for measurement sets other than those used for training. Being a linear model, it is straightforward to estimate the conductor ampacity for a set of predicted weather parameters. The PLS estimated ampacity has proven its accuracy through an outdoor experiment on a piece of the line conductor in real weather conditions.
Resumo:
This paper presents a statistical model for the thermal behaviour of the line model based on lab tests and field measurements. This model is based on Partial Least Squares (PLS) multi regression and is used for the Dynamic Line Rating (DLR) in a wind intensive area. DLR provides extra capacity to the line, over the traditional seasonal static rating, which makes it possible to defer the need for reinforcement the existing network or building new lines. The proposed PLS model has a number of appealing features; the model is linear, so it is straightforward to use for predicting the line rating for future periods using the available weather forecast. Unlike the available physical models, the proposed model does not require any physical parameters of the line, which avoids the inaccuracies resulting from the errors and/or variations in these parameters. The developed model is compared with physical model, the Cigre model, and has shown very good accuracy in predicting the conductor temperature as well as in determining the line rating for future time periods.
Resumo:
Objectives: To identify demographic and socioeconomic determinants of need for acute hospital treatment at small area level. To establish whether there is a relation between poverty and use of inpatient services. To devise a risk adjustment formula for distributing public funds for hospital services using, as far as possible, variables that can be updated between censuses. Design: Cross sectional analysis. Spatial interactive modelling was used to quantify the proximity of the population to health service facilities. Two stage weighted least squares regression was used to model use against supply of hospital and community services and a wide range of potential needs drivers including health, socioeconomic census variables, uptake of income support and family credit, and religious denomination. Setting: Northern Ireland. Main outcome measure: Intensity of use of inpatient services. Results: After endogeneity of supply and use was taken into account, a statistical model was produced that predicted use based on five variables: income support, family credit, elderly people living alone, all ages standardised mortality ratio, and low birth weight. The main effect of the formula produced is to move resources from urban to rural areas. Conclusions: This work has produced a population risk adjustment formula for acute hospital treatment in which four of the five variables can be updated annually rather than relying on census derived data. Inclusion of the social security data makes a substantial difference to the model and to the results produced by the formula.
Resumo:
The results of a study aimed at determining the most important experimental parameters for automated, quantitative analysis of solid dosage form pharmaceuticals (seized and model 'ecstasy' tablets) are reported. Data obtained with a macro-Raman spectrometer were complemented by micro-Raman measurements, which gave information on particle size and provided excellent data for developing statistical models of the sampling errors associated with collecting data as a series of grid points on the tablets' surface. Spectra recorded at single points on the surface of seized MDMA-caffeine-lactose tablets with a Raman microscope (lambda(ex) = 785 nm, 3 mum diameter spot) were typically dominated by one or other of the three components, consistent with Raman mapping data which showed the drug and caffeine microcrystals were ca 40 mum in diameter. Spectra collected with a microscope from eight points on a 200 mum grid were combined and in the resultant spectra the average value of the Raman band intensity ratio used to quantify the MDMA: caffeine ratio, mu(r), was 1.19 with an unacceptably high standard deviation, sigma(r), of 1.20. In contrast, with a conventional macro-Raman system (150 mum spot diameter), combined eight grid point data gave mu(r) = 1.47 with sigma(r) = 0.16. A simple statistical model which could be used to predict sigma(r) under the various conditions used was developed. The model showed that the decrease in sigma(r) on moving to a 150 mum spot was too large to be due entirely to the increased spot diameter but was consistent with the increased sampling volume that arose from a combination of the larger spot size and depth of focus in the macroscopic system. With the macro-Raman system, combining 64 grid points (0.5 mm spacing and 1-2 s accumulation per point) to give a single averaged spectrum for a tablet was found to be a practical balance between minimizing sampling errors and keeping overhead times at an acceptable level. The effectiveness of this sampling strategy was also tested by quantitative analysis of a set of model ecstasy tablets prepared from MDEA-sorbitol (0-30% by mass MDEA). A simple univariate calibration model of averaged 64 point data had R-2 = 0.998 and an r.m.s. standard error of prediction of 1.1% whereas data obtained by sampling just four points on the same tablet showed deviations from the calibration of up to 5%.
Resumo:
In this paper the parameters of cement grout affecting rheological behaviour and compressive strength are investigated. Factorial experimental design was adopted in this investigation to assess the combined effects of the following factors on fluidity, rheological properties, induced bleeding and compressive strength: water/binder ratio (W/B), dosage of superplasticiser (SP), dosage of viscosity agent (VA), and proportion of limestone powder as replacement of cement (LSP). Mini-slump test, Marsh cone, Lombardi plate cohesion meter, induced bleeding test, coaxial rotating cylinder viscometer were used to evaluate the rheology of the cement grout and the compressive strengths at 7 and 28 days were measured. A two-level fractional factorial statistical model was used to model the influence of key parameters on properties affecting the fluidity, the rheology and compressive strength. The models are valid for mixes with 0.35-0.42 W/B, 0.3-1.2% SP, 0.02-0.7% VA (percentage of binder) and 12-45% LSP as replacement of cement. The influences of W/B, SP, VA and LSP were characterised and analysed using polynomial regression which can identify the primary factors and their interactions on the measured properties. Mathematical polynomials were developed for mini-slump, plate cohesion meter, inducing bleeding, yield value, plastic viscosity and compressive strength as function of W/B, SP, VA and proportion of LSP. The statistical approach used highlighted the limestone powder effect and the dosage of SP and VA on the various rheological characteristics of cement grout
Resumo:
We report here the syntheses, characterisation and electrochemistry of some 1-ethyl-3-methylimidazolium, [emim], uranium halide salts. The electrochemistry of the uranium halide salts were investigated in both basic and acidic haloaluminate ionic liquids (ILs). The solid state structures of the uranium chloride salts have previously been reported, but have now been re-evaluted using a new statistical model to determine the presence or absence of weak hydrogen bonding interactions in the crystalline state.
Resumo:
Scaling relationships between mean body masses and abundances of species in multitrophic communities continue to be a subject of intense research and debate. The top-down mechanism explored in this paper explains the frequently observed inverse linear relationship between body mass and abundance (i.e., constant biomass) in terms of a balancing of resource biomasses by behaviorally and evolutionarily adapting foragers, and the evolutionary response of resources to this foraging pressure. The mechanism is tested using an allometric, multitrophic community model with a complex food web structure. It is a statistical model describing the evolutionary and population dynamics of tens to hundreds of species in a uniform way. Particularities of the model are the detailed representation of the evolution and interaction of trophic traits to reproduce topological food web patterns, prey switching behavior modeled after experimental observations, and the evolutionary adaptation of attack rates. Model structure and design are discussed. For model states comparable to natural communities, we find that (1) the body-mass-abundance scaling does not depend on the allometric scaling exponent of physiological rates in the form expected from the energetic equivalence rule or other bottom-up theories; (2) the scaling exponent of abundance as a function of body mass is approximately -1, independent of the allometric exponent for physiological rates assumed; (3) removal of top-down control destroys this pattern, and energetic equivalence is recovered. We conclude that the top-down mechanism is active in the model, and that it is a viable alternative to bottom-up mechanisms for controlling body-mass-abundance relations in natural communities.
Resumo:
In this paper we propose a statistical model for detection and tracking of human silhouette and the corresponding 3D skeletal structure in gait sequences. We follow a point distribution model (PDM) approach using a Principal Component Analysis (PCA). The problem of non-lineal PCA is partially resolved by applying a different PDM depending of pose estimation; frontal, lateral and diagonal, estimated by Fisher's linear discriminant. Additionally, the fitting is carried out by selecting the closest allowable shape from the training set by means of a nearest neighbor classifier. To improve the performance of the model we develop a human gait analysis to take into account temporal dynamic to track the human body. The incorporation of temporal constraints on the model increase reliability and robustness.
Resumo:
Temporal dynamics and speaker characteristics are two important features of speech that distinguish speech from noise. In this paper, we propose a method to maximally extract these two features of speech for speech enhancement. We demonstrate that this can reduce the requirement for prior information about the noise, which can be difficult to estimate for fast-varying noise. Given noisy speech, the new approach estimates clean speech by recognizing long segments of the clean speech as whole units. In the recognition, clean speech sentences, taken from a speech corpus, are used as examples. Matching segments are identified between the noisy sentence and the corpus sentences. The estimate is formed by using the longest matching segments found in the corpus sentences. Longer speech segments as whole units contain more distinct dynamics and richer speaker characteristics, and can be identified more accurately from noise than shorter speech segments. Therefore, estimation based on the longest recognized segments increases the noise immunity and hence the estimation accuracy. The new approach consists of a statistical model to represent up to sentence-long temporal dynamics in the corpus speech, and an algorithm to identify the longest matching segments between the noisy sentence and the corpus sentences. The algorithm is made more robust to noise uncertainty by introducing missing-feature based noise compensation into the corpus sentences. Experiments have been conducted on the TIMIT database for speech enhancement from various types of nonstationary noise including song, music, and crosstalk speech. The new approach has shown improved performance over conventional enhancement algorithms in both objective and subjective evaluations.
Resumo:
A micro-grid is an autonomous system which can be operated and connected to an external system or isolated with the help of energy storage systems (ESSs). While the daily output of distributed generators (DGs) strongly depends on the temporal distribution of natural resources such as wind and solar, unregulated electric vehicle (EV) charging demand will deteriorate the imbalance between the daily load and generation curves. In this paper, a statistical model is presented to describe daily EV charging/discharging behaviour. An optimisation problem is proposed to obtain economic operation for the micro-grid based on this model. In day-ahead scheduling, with estimated information of power generation and load demand, optimal charging/discharging of EVs during 24 hours is obtained. A series of numerical optimization solutions in different scenarios is achieved by serial quadratic programming. The results show that optimal charging/discharging of EVs, a daily load curve can better track the generation curve and the network loss and required ESS capacity are both decreased. The paper also demonstrates cost benefits for EVs and operators.