102 resultados para Gene Delivery-systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter examines key concepts with respect to cancer gene therapy and the current issues with respect to non-viral delivery. The biological and molecular barriers that need to be overcome before effective non-viral delivery systems can be appropriately designed for oncology applications are highlighted and ways to overcome these are discussed. Strategies developed to evade the immune response are also described and targeted gene delivery is examined with the most effective strategies highlighted. Finally, this chapter proposes a new way forward based on a growing body of evidence that supports a multifunctional delivery approach involving the creation of vectors, with a unique molecular architecture designed using a bottom-up approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the application of gene delivery vectors based on connecting together two well-defined low-generation poly(L-lysine) (PLL) dendrons using a disulfide-containing linker unit. We report that the transfection ability of these vectors in their own right is relatively low, because the low-generation number limits the endosomal buffering capacity. Importantly, however, we demonstrate that when applied in combination with Lipofectamine 2000 (TM), a vector from the cationic lipid family, these small cationic additives significantly enhance the levels of gene delivery (up to four-fold). Notably, the cationic additives have no effect on the levels of transfection observed with a cationic polymer, such as DEAE dextran. We therefore argue that the synergistic effects observed with Lipofectamine 2000 (TM) arise as a result of combining the delivery advantages of two different classes of vector within a single formulation, with our dendritic additives providing a degree of pH buffering within the endosome. As such, the data we present indicate that small dendritic structures, although previously largely overlooked for gene delivery owing to their inability to transfect in their own right, may actually be useful well-defined additives to well-established vector systems in order to enhance the gene delivery payload.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates the polyanion initiated gelation process in fabricating chitosan-TPP (tripolyphosphate) nanoparticles in the size range of 100-250 nm intended to be used as carriers for the delivery of gene or protein macromolecules. It demonstrates that ionic gelation of cationic chitosan molecules offers a flexible and easily controllable process for systematically and predictably manipulating particle size and surface charge which are important properties in determining gene transfection efficacy if the nanoparticles are used as non-viral vectors for gene delivery, or as delivery carriers for protein molecules. Variations in chitosan molecular weight, chitosan concentration, chitosan to TPP weight ratio and solution pH value were examined systematically for their effects on nanoparticle size, intensity of surface charge, and tendency of particle aggregation so as to enable speedy fabrication of chitosan nanoparticles with predetermined properties. The chitosan-TPP nanoparticles exhibited a high positive surface charge across a wide pH range, and the isoelectric point (IEP) of the nanoparticles was found to be at pH 9.0. Detailed imaging analysis of the particle morphology revealed that the nanoparticles possess typical shapes of polyhedrons (e.g., pentagon and hexagon), indicating a similar crystallisation mechanism during the particle formation and growth process. This study demonstrates that systematic design and modulation of the surface charge and particle size of chitosan-TPP nanoparticles can be readily achieved with the right control of critical processing parameters, especially the chitosan to TPP weight ratio. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/AIMS:
Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial ischemia, oxidative stress and hypertrophy; expression of the vasodilator peptide, adrenomedullin (AM) and its receptors is augmented in cardiomyocytes, indicating that the myocardial AM system may be activated in response to pressure loading and ischemic insult to serve a counter-regulatory, cardio-protective role. The study examined the hypothesis that oxidative stress and hypertrophic remodeling in NO-deficient cardiomyocytes are attenuated by adenoviral vector-mediated delivery of the human adrenomedullin (hAM) gene in vivo.

METHODS:
The NO synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 15mg . kg(-1) . day(-1)) was given to rats for 4 weeks following systemic administration via the tail vein of a single injection of either adenovirus harbouring hAM cDNA under the control of the cytomegalovirus promoter-enhancer (Ad.CMV-hAM-4F2), or for comparison, adenovirus alone (Ad.Null) or saline. Cardiomyocytes were subsequently isolated for assessment of the influence of each intervention on parameters of oxidative stress and hypertrophic remodelling.

RESULTS: Cardiomyocyte expression of the transgene persisted for > or =4 weeks following systemic administration of adenoviral vector. In L-NAME treated rats, relative to Ad.Null or saline administration, Ad.CMV-hAM-4F2 (i) reduced augmented cardiomyocyte membrane protein oxidation and mRNA expression of pro-oxidant (p22phox) and anti-oxidant (SOD-3, GPx) genes; (ii) attenuated increased cardiomyocyte width and mRNA expression of hypertrophic (sk-alpha-actin) and cardio-endocrine (ANP) genes; (iii) did not attenuate hypertension.

CONCLUSIONS: Adenoviral vector mediated delivery of hAM resulted in attenuation of myocardial oxidative stress and hypertrophic remodelling in the absence of blood pressure reduction in this model of chronic NO-deficiency. These findings are consistent with a direct cardio-protective action in the myocardium of locally-derived hAM which is not dependant on NO generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight <500 Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this present work we describe a poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulation for intracellular delivery of plasmid DNA. This formulation was developed to encapsulate DNA within PLGA nanoparticles that combined salting out and emulsion evaporation processes. This process reduced the requirement for sonication which can induce degradation of the DNA. A monodispersed nanoparticle population with a mean diameter of approximately 240 nm was produced, entrapping a model plasmid DNA in both supercoiled and open circular structures. To induce endosomal escape of the nanoparticles, a superficial cationic charge was introduced using positively charged surfactants cetyl trimethylammonium bromide (CTAB) and dimethyldidodecylammonium bromide (DMAB), which resulted in elevated zeta potentials. As expected, both cationic coatings reduced cell viability, but at equivalent positive zeta potentials, the DMAB coated nanoparticles induced significantly less cytotoxicity than those coated with CTAB. Fluorescence and transmission electron microscopy demonstrated that the DMAB coated cationic nanoparticles were able to evade the endosomal lumen and localise in the cytosol of treated cells. Consequently, DMAB coated PLGA nanoparticles loaded with a GFP reporter plasmid exhibited significant improvements in transfection efficiencies with comparison to non-modified particles, highlighting their functional usefulness. These nanoparticles may be useful in delivery of gene therapies to targeted cells. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: