41 resultados para Food and drink industry
Resumo:
Growing awareness of the importance of healthy diet in early childhood makes it important to chart the development of children's understanding of food and drink. This study aimed to document young children's evaluation of food and drink as healthy, and to explore relationships with socioeconomic status, family eating habits, and children's television viewing. Data were gathered from children aged 3-5. years (. n=. 172) in diverse socioeconomic settings in Ireland, and from their parents. Results demonstrated that children had very high levels of ability to identify healthy foods as important for growth and health, but considerably less ability to reject unhealthy items, although knowledge of these increased significantly between ages 3 and 5. Awareness of which foods were healthy, and which foods were not, was not related to family socioeconomic status, parent or child home eating habits, or children's television viewing. Results highlighted the importance of examining young children's response patterns, as many of the youngest showed a consistent 'yes bias'; however, after excluding these responses, the significant findings remained. Findings suggest it is important to teach children about less healthy foods in the preschool years. © 2013 Elsevier Ltd.
Resumo:
The efficacy of TiO 2 photocatalysis for the destruction of pathogenic bacteria has been demonstrated by a number of groups over the past two decades. Pathogenic bacteria represent a significant hazard for the food and drink industry. Current practices in this industry dictate that rigorous sanitizing regimes must be regularly implemented resulting in lost production time. The incorporation of a TiO 2 antibacterial surface coating in this setting would be highly desirable. In this paper we report a preliminary study of the efficacy of a TiO 2 coating, doped with the lanthanide, neodymium, at low temperature conditions such as those utilised in the food and drink sector. The rapid destruction of Staphylococcus aureus, a common foodborne pathogen, was observed using TiO 2 films coated to glass and steel substrates.
Resumo:
Food labelling has been overlooked in the emerging body of literature concerning the normative dimensions of food and drink policies. In this paper, I argue that arguments normally advanced in bioethics and medical ethics regarding the “right to know” and the “right not to know” can provide useful normative guidelines for critically assessing existing and proposed food labelling regimes. More specifically, I claim that food labelling ought to respect the legitimate interests and the autonomy of both consumers who seek knowledge about their food in order to make informed dietary choices and consumers who prefer to remain ignorant about the contents and effects of their food in order to avoid the emotional and psychological harm, or more simply the loss of enjoyment, which may result from receiving that information.
Resumo:
Interspecific interactions are major structuring forces in marine littoral communities; however, it is unclear which of these interactions are exhibited by many key-component species. Gut content analysis showed that the ubiquitous rocky/cobble shore amphipod Echinogammarus marinas, often ascribed as a mesograzer, consumes both algae and macroinvertebrates. Further, laboratory experiments showed that E. marinus is an active predator of such macroinvertebrates, killing and consuming the isopod Jaera nordmanni and the oligochaete Tubificoides benedii. Predatory impacts of E. marinus were not alleviated by the presence of alternative food in the form of alga discs. However, in the presence of prey, consumption of alga by E. marinus was significantly reduced. Further, survival of prey was significantly higher when substrate was provided, but predation remained significant and did not decline with further increases in substrate heterogeneity. We conclude that such amphipods can have pervasive predatory impacts on a range of species, with implications for community structure, diversity and functioning.
Resumo:
Animals inhabiting environments with low productivity and food availability commonly have reduced energy demands and increased digestive efficiencies. The dry matter intake (DMI), apparent digestible dry matter (ADDM), digestible efficiency (DE) and digestible energy intake (DEI) of two populations of common spiny mouse Acomys cahirinus were compared during both winter and summer under conditions of simulated water stress. Mice were captured from the north- and south-facing slopes (NFS and SFS) of the same canyon that represent mesic and xeric habitats, respectively. Measured variables were also compared between F-1 mice that had been born to either NFS or SFS mice, and raised in the laboratory. SFS mice were able to assimilate energy more efficiently than NFS mice during the summer. By comparison, NFS mice were able to assimilate more energy during the winter. During winter, NFS mice assimilated more energy at low levels of water stress, whereas SFS mice assimilated more energy at higher levels. Differences were also apparent in F-1 mice. It is therefore suggested that local climatic conditions can impose physiological adaptations that are retained in succeeding generations, creating unique meta-populations.
Resumo:
According to Marshall’s agglomeration theory, Krugman’s New Economic Geography models, and Porter’s cluster policies, firms should receive increasing returns from a trinity of agglomeration economies: a local pool of skilled labour, local supplier linkages, and local knowledge spillovers. Recent evolutionary theories suggest that whether agglomeration economies generate increasing returns or diminishing returns depends on time, and especially the evolution of the industry life cycle. At the start of the twenty-first century, we re-examine Marshall’s trinity of agglomeration economies in the city-region where he discovered them. The econometric results from our multivariate regression models are the polar opposite of Marshall’s. During the later stages of the industry life cycle, Marshall’s agglomeration economies decrease the economic performance of firms and create widespread diminishing returns for the economic development of the city-region, which has evolved to become one of the poorest city-regions in Europe.
Resumo:
Exposure assessment is a critical part of epidemiological studies into the effect of mycotoxins on human health. Whilst exposure assessment can be made by estimating the quantity of ingested toxins from food analysis and questionnaire data, the use of biological markers (biomarkers) of exposure can provide a more accurate measure of individual level of exposure in reflecting the internal dose. Biomarkers of exposure can include the excreted toxin or its metabolites, as well as the products of interaction between the toxin and macromolecules such as protein and DNA. Samples in which biomarkers may be analysed include urine, blood, other body fluids and tissues, with urine and blood being the most accessible for human studies. Here we describe the development of biomarkers of exposure for the assessment of three important mycotoxins; aflatoxin, fumonisin and deoxynivalenol. A number of different biomarkers and methods have been developed that can be applied to human population studies, and these approaches are reviewed in the context of their application to molecular epidemiology research.
Resumo:
Even moderate arsenic exposure may lead to health problems, and thus quantifying inorganic arsenic (iAs) exposure from food for different population groups in China is essential. By analyzing the data from the China National Nutrition and Health Survey (CNNHS) and collecting reported values of iAs in major food groups, we developed a framework of calculating average iAs daily intake for different regions of China. Based on this framework, cancer risks from As in food was deterministically and probabilistically quantified. The article presents estimates for health risk due to the ingestion of food products contaminated with arsenic. Both per individual and for total population estimates were obtained. For the total population, daily iAs intake is around 42 mu g day(-1), and rice is the largest contributor of total iAs intake accounting for about 60%. Incremental lifetime cancer risk from food iAs intake is 106 per 100,000 for adult individuals and the median population cancer risk is 177 per 100,000 varying between regions. Population in the Southern region has a higher cancer risk than that in the Northern region and the total population. Sensitive analysis indicated that cancer slope factor, ingestion rates of rice, aquatic products and iAs concentration in rice were the most relevant variables in the model, as indicated by their higher contribution to variance of the incremental lifetime cancer risk. We conclude that rice may be the largest contributor of iAs through food route for the Chinese people. The population from the South has greater cancer risk than that from the North and the whole population. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
By enabling subwavelength light localization and strong electromagnetic field enhancement, plasmonic biosensors have opened up a new realm of possibilities for a broad range of chemical and biological sensing applications owing to their label-free and real-time attributes. Although significant progress has been made, many fundamental and practical challenges still remain to be addressed. For instance, the plasmonic biosensors are nonselective sensing platforms; they are not well-suited to provide information regarding conformation or chemical fingerprint of unknown biomolecules. Furthermore, tunability of the plasmonic resonance in visible frequency regime is still limited; this will prevent their efficient and reproducible exploitation in single-molecule sensitivity. Here, we show that by engineering geometry of plasmonic metamaterials,1 consisting of periodic arrays of artificial split-ring resonators (SRRs), the plasmonic resonance of metamaterials could be tuned to visible-near infrared regimes (Vis-NIR) such that it allows parallel acquisition of optical transmission and highly surface-enhanced Raman (SERS) spectra from large functionalized SRR arrays. The Au SRRs were designed in form of alphabet letters (U, V, S, H, Y) with various line width (from 80 to 30 nm). By tailoring their size and shape, plasmonic resonance wavelength of the SRRs could be actively tuned so that it gives the strongest SERS effect under given excitation energy and polarization for biological and organic molecules. On the other hand, the plasmonic tunability was also achieved for a given SRR pattern by tuning the laser wavelength to obtain the highest electromagnetic field enhancement. The geometry- and laser-tunable channels typically provide an electromagnetic field enhancement as high as 20 times. This will provide the basis of versatile and multichannel devices for identification of different conformational states of Guanine-rich DNA, detection of a cancer biomarker nucleolin, and femtomolar sensitivity detection of food and drink additives. These results show that the tunable Vis-IR metamaterials are very versatile biosensing platforms and suggest considerable promise in genomic research, disease diagnosis, and food safety analysis.