21 resultados para Firing (Ceramics)
Resumo:
Pb(Zr,Ti)O-3 (PZT) based compositions have been challenging to texture or grow in a single crystal form due to the incongruent melting point of ZrO2. Here we demonstrate the method for achieving 90% textured PZT-based ceramics and further show that it can provide highest known energy density in piezoelectric materials through enhancement of piezoelectric charge and voltage coefficients (d and g). Our method provides more than similar to 5x increase in the ratio d(textured)/d(random). A giant magnitude of d.g coefficient with value of 59 000 x 10(-15) m(2) N-1 (comparable to that of the single crystal counterpart and 359% higher than that of the best commercial compositions) was obtained. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789854]
Resumo:
A scanning probe microscopy approach for mapping local irreversible electrochemical processes based on detection of bias-induced frequency shifts of cantilevers in contact with the electrochemically active surface is demonstrated. Using Li ion conductive glass ceramic as a model, we demonstrate near unity transference numbers for ionic transport and establish detection limits for current-based and strain-based detection. The tip-induced electrochemical process is shown to be a first-order transformation and nucleation potential is close to the Li metal reduction potential. Spatial variability of the nucleation bias is explored and linked to the local phase composition. These studies both provide insight into nanoscale ionic phenomena in practical Li-ion electrolyte and also open pathways for probing irreversible electrochemical, bias-induced, and thermal transformations in nanoscale systems.
Resumo:
In order to combine the mechanical properties of yttria-stabilised zirconia (ZrO2-3 mol% Y2O3; code Y-ZrO2) with the bioactivity of titania (TiO2), Y-ZrO2-TiO2, green compacts with 0-40vol.% TiO2 were sintered at 1300, 1400, and 1500degreesC for 4h, respectively. The microstructural features such as grains, pores, and phases were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDX). The mechanical properties such as hardness and toughness were also determined using the methods of Vickers indentation and Knoop indentation. All the composites showed the major tetragonal Y-ZrO2 phase regardless of the content of the added TiO2. However, rutile TiO2 phase was obtained at 1300degreesC, whereas zirconium titanate (ZrTi04) phase was found at 1400 and 1500degreesC. The Y-ZrO2-ZrTiO4 Composites sintered at 1500degreesC showed relatively high hardness (860-1000 kg/mm(2)) and toughness (4.0-4.5 MPa m(0.5)), whereas the Y-ZrO2-TiO2 composites sintered at 1300degreesC had slightly lower hardness (720-950kg/mm(2)) and fracture toughness (3.1-3.3 MPa m(0.5)). (C) 2004 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69-91% and 4-27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources.
Resumo:
Biomass fuels have long been accepted as useful renewable energy sources, especially in mitigating greenhouse gases (GHG), nitrogen oxides, and sulfur oxide emissions. Biomass fuel is carbon neutral and is usually low in both nitrogen and sulfur. For the past decade, various forms of biomass fuels have been co-combusted in existing coal-fired boilers and gas-fired power plants. Biomass is used as a supplemental fuel to substitute for up to 10% of the base fuel in most full commercial operations. There are several successful co-firing projects in many parts of the world, particularly in Europe and North America. However, despite remarkable commercial success in Europe, most of the biomass co-firing in North America is limited to demonstration levels. This review takes a detailed look at several aspects of biomass co-firing with a direct focus on North America. It also explores the benefits, such as the reduction of GHG emissions and its implications. This paper shows the results of our studies of the biomass resources available in North America that can be used in coal-fired boilers, their availability and transportation to the power plant, available co-firing levels and technologies, and various technological and environmental issues associated with biomass co-firing. Finally, the paper proffers solutions to help utility companies explore biomass co-firing as a transitional option towards a completely carbon-free power sector in North America.
Resumo:
The chemical compositions of calcium phosphate materials are similar to that of bone making them very attractive for use in the repair of critical size bone defects. The bioresorption of calcium phosphate occurs principally by dissolution. To determine the impact of composition and flow conditions on dissolution rates, calcium phosphate tablets were prepared by slip casting of ceramic slips with different ratios of hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP). Dissolution was evaluated at pH4 using both a static and dynamic flow regime. Both the composition of the HA:ß-TCP tablet and flow regime noticeably influenced the rate of dissolution; the 50:50 HA:ß-TCP composition demonstrating the greatest level of dissolution, and, exposure of the ceramic specimens to dynamic conditions producing the highest rate of dissolution. Understanding the impact of phase composition and flow condition with respect to the dissolution of calcium phosphate will aid in the development and improvement of materials for bone substitution.
Resumo:
A potential standard method for measuring the relative dissolution rate to estimate the resorbability of calcium-phosphate-based ceramics is proposed. Tricalcium phosphate (TCP), magnesium-substituted TCP (MgTCP) and zinc-substituted TCP (ZnTCP) were dissolved in a buffer solution free of calcium and phosphate ions at pH 4.0, 5.5 or 7.3 at nine research centers. Relative values of the initial dissolution rate (relative dissolution rates) were in good agreement among the centers. The relative dissolution rate coincided with the relative volume of resorption pits of ZnTCP in vitro. The relative dissolution rate coincided with the relative resorbed volume in vivo in the case of comparison between microporous MgTCPs with different Mg contents and similar porosity. However, the relative dissolution rate was in poor agreement with the relative resorbed volume in vivo in the case of comparison between microporous TCP and MgTCP due to the superimposition of the Mg-mediated decrease in TCP solubility on the Mg-mediated increase in the amount of resorption. An unambiguous conclusion could not be made as to whether the relative dissolution rate is predictive of the relative resorbed volume in vivo in the case of comparison between TCPs with different porosity. The relative dissolution rate may be useful for predicting the relative amount of resorption for calcium-phosphate-based ceramics having different solubility under the condition that the differences in the materials compared have little impact on the resorption process such as the number and activity of resorbing cells.
Resumo:
Displacement of fossil fuel-based power through biomass co-firing could reduce the greenhouse gas (GHG) emissions from fossil fuels. In this study, data-intensive techno-economic models were developed to evaluate different co-firing technologies as well as the configurations of these technologies. The models were developed to study 60 different scenarios involving various biomass feedstocks (wood chips, wheat straw, and forest residues) co-fired either with coal in a 500 MW subcritical pulverized coal (PC) plant or with natural gas in a 500 MW natural gas combined cycle (NGCC) plant to determine their technical potential and costs, as well as to determine environmental benefits. The results obtained reveal that the fully paid-off coal-fired power plant co-fired with forest residues is the most attractive option, having levelized costs of electricity (LCOE) of $53.12–$54.50/MW h and CO2 abatement costs of $27.41–$31.15/tCO2. When whole forest chips are co-fired with coal in a fully paid-off plant, the LCOE and CO2 abatement costs range from $54.68 to $56.41/MW h and $35.60 to $41.78/tCO2, respectively. The LCOE and CO2 abatement costs for straw range from $54.62 to $57.35/MW h and $35.07 to $38.48/tCO2, respectively.