18 resultados para Fiber nonlinear optics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an ab initio real-time-based computational approach to study nonlinear optical properties in condensed matter systems that is especially suitable for crystalline solids and periodic nanostructures. The equations of motion and the coupling of the electrons with the external electric field are derived from the Berry-phase formulation of the dynamical polarization [Souza et al., Phys. Rev. B 69, 085106 (2004)]. Many-body effects are introduced by adding single-particle operators to the independent-particle Hamiltonian. We add a Hartree operator to account for crystal local effects and a scissor operator to correct the independent particle band structure for quasiparticle effects. We also discuss the possibility of accurately treating excitonic effects by adding a screened Hartree-Fock self-energy operator. The approach is validated by calculating the second-harmonic generation of SiC and AlAs bulk semiconductors: an excellent agreement is obtained with existing ab initio calculations from response theory in frequency domain [Luppi et al., Phys. Rev. B 82, 235201 (2010)]. We finally show applications to the second-harmonic generation of CdTe and the third-harmonic generation of Si. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonlinear optics is an essential component of modern laser systems and optoelectronic devices. It has also emerged as an important tool in probing the electronic, vibrational, magnetic, and crystallographic structure of materials ranging from oxides and metals, to polymers and biological samples. This review focuses on the specific technique of optical second harmonic generation (SHG), and its application in probing ferroelectric complex oxide crystals and thin films. As the dominant SHG interaction mechanism exists only in materials that lack inversion symmetry, SHG is a sensitive probe of broken inversion symmetry, and thus also of bulk polar phenomena in materials. By performing in-situ SHG polarimetry experiments in different experimental conditions such as sample orientation, applied electric field, and temperature, one can probe ferroelectric hysteresis loops and phase transitions. Careful modeling of the polarimetry data allows for the determination of the point group symmetry of the crystal. In epitaxial thin films with a two-dimensional arrangement of well-defined domain orientations, one can extract information about intrinsic material properties such as nonlinear coefficients, as well as microstructural information such as the local statistics of the different domain variants being probed. This review presents several detailed examples of ferroelectric systems where such measurements and modeling are performed. The use of SHG microscopic imaging is discussed, and its ability to reveal domain structures and phases not normally visible with linear optics is illustrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The second harmonic generation (SHG) intensity spectrum of SiC, ZnO, GaN two-dimensional hexagonal crystals is calculated by using a real-time first-principles approach based on Green's function theory [Attaccalite et al., Phys. Rev. B: Condens. Matter Mater. Phys. 2013 88, 235113]. This approach allows one to go beyond the independent particle description used in standard first-principles nonlinear optics calculations by including quasiparticle corrections (by means of the GW approximation), crystal local field effects and excitonic effects. Our results show that the SHG spectra obtained using the latter approach differ significantly from their independent particle counterparts. In particular they show strong excitonic resonances at which the SHG intensity is about two times stronger than within the independent particle approximation. All the systems studied (whose stabilities have been predicted theoretically) are transparent and at the same time exhibit a remarkable SHG intensity in the range of frequencies at which Ti:sapphire and Nd:YAG lasers operate; thus they can be of interest for nanoscale nonlinear frequency conversion devices. Specifically the SHG intensity at 800 nm (1.55 eV) ranges from about 40-80 pm V(-1) in ZnO and GaN to 0.6 nm V(-1) in SiC. The latter value in particular is 1 order of magnitude larger than values in standard nonlinear crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An effective ellipsometric technique to determine parameters that characterize second-harmonic optical and magneto-optical effects in centrosymmetric media within the electric-dipole approximation is proposed and outlined in detail. The parameters, which are ratios of components of the nonlinear-surface-susceptibility tensors, are obtained from experimental data related to the state of polarization of the second-harmonic-generated radiation as a function of the angle between the plane of incidence and the polarization plane of the incident, linearly polarized, fundamental radiation. Experimental details of the technique are described. A corresponding theoretical model is given as an example for a single isotropic surface assuming polycrystalline samples. The surfaces of air-Au and air-Ni (in magnetized and demagnetized states) have been investigated ex situ in ambient air, and the results are presented. A nonlinear, least-squares-minimization fitting procedure between experimental data and theoretical formulas has been shown to yield realistic, unambiguous results for the ratios corresponding to each of the above materials. Independent methods for verifying the validity of the fitting parameters are also presented. The influence of temporal variations at the surfaces on the state of polarization (due to adsorption, contamination, or oxidation) is also illustrated for the demagnetized air-Ni surface. (C) 2005 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of recognising targets in non-overlapping clutter using nonlinear N-ary phase filters is addressed. Using mathematical analysis, expressions were derived for an N-ary phase filter and the intensity variance of an optical correlator output. The N-ary phase filter was shown to consist of an infinite sum of harmonic terms whose periodicity was determined by N. For the intensity variance, it was found that under certain conditions the variance was minimised due to a hitherto undiscovered phase quadrature effect. Comparison showed that optimal real filters produced greater SNR values than the continuous phase versions as a consequence of this effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that homodyne measurements can be used to demonstrate violations of Bell's inequality with Gaussian states, when the local rotations used for these types of tests are implemented using nonlinear unitary operations. We reveal that the local structure of the Gaussian state under scrutiny is crucial in the performance of the test. The effects of finite detection efficiency are thoroughly studied and shown to only mildly affect the revelation of Bell violations. We speculate that our approach may be extended to other applications such as entanglement distillation where local operations are necessary elements besides quantum entanglement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The applicability of the Watson Hamiltonian for the description of nonlinear molecules—especially triatomic ones—has always been questioned, as the Jacobian of the transformation that leads to the Watson Hamiltonian, vanishes at the linear configuration. This results in singular behavior of the Watson Hamiltonian, giving rise to serious numerical problems in the computation of vibrational spectra, with unphysical, spurious vibrational states appearing among the physical vibrations, especially in the region of highly excited states. In this work, we analyze the problem and propose a simple way to confine the nuclear wavefunction in such a way that the spurious solutions are eliminated. We study the water molecule and observe an improvement compared with previous results. We also apply the method to the van der Walls molecule XeHe2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear aspects of longitudinal motion of interacting point masses in a lattice are revisited, with emphasis on the paradigm of charged dust grains in a dusty plasma (DP) crystal. Different types of localized excitations, predicted by nonlinear wave theories, are reviewed and conditions for their occurrence (and characteristics) in DP crystals are discussed. Making use of a general formulation, allowing for an arbitrary (e.g. the Debye electrostatic or else) analytic potential form phi(r) and arbitrarily long site-to-site range of interactions, it is shown that dust-crystals support nonlinear kink-shaped localized excitations propagating at velocities above the characteristic DP lattice sound speed v(0). Both compressive and rarefactive kink-type excitations are predicted, depending on the physical parameter values, which represent pulse- (shock-)like coherent structures for the dust grain relative displacement. Furthermore, the existence of breather-type localized oscillations, envelope-modulated wavepackets and shocks is established. The relation to previous results on atomic chains as well as to experimental results on strongly-coupled dust layers in gas discharge plasmas is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical model is presented for the description of nonlinear dust-ion-acoustic waves propagating in an unmagnetized, collisionless, three component plasma composed of electrons, ions and inertial dust grains. The formulation relies on a Lagrangian approach of the plasma fluid model. The modulational stability of the wave amplitude is investigated. Different types of localized envelope electrostatic excitations are shown to exist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A distributed optical fiber sensor based on Brillouin scattering (BOTDR or BOTDA) can measure and monitor strain and temperature generated along optical fiber. Because it can measure in real-time with high precision and stability, it is quite suitable for health monitoring of large-scale civil infrastructures. However, the main challenge of applying it to structural health monitoring is to ensure it is robust and can be repaired by adopting a suitable embedding method. In this paper, a novel method based on air-blowing and vacuum grouting techniques for embedding long-distance optical fiber sensors was developed. This method had no interference with normal concrete construction during its installation, and it could easily replace the long-distance embedded optical fiber sensor (LEOFS). Two stages of static loading tests were applied to investigate the performance of the LEOFS. The precision and the repeatability of the LEOFS were studied through an overloading test. The durability and the stability of the LEOFS were confirmed by a corrosion test. The strains of the LEOFS were used to evaluate the reinforcing effect of carbon fiber reinforced polymer and thereby the health state of the beams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the scaling behaviors of a time-dependent fiber-bundle model with local load sharing. Upon approaching the complete failure of the bundle, the breaking rate of fibers diverges according to r(t)proportional to(T-f-t)(-xi) where T-f is the lifetime of the bundle and xi approximate to 1.0 is a universal scaling exponent. The average lifetime of the bundle [T-f] scales with the system size as N-delta, where delta depends on the distribution of individual fiber as well as the breakdown rule. [S1063-651X(99)13902-3].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of mixing and scattering of two non-collinear Gaussian pulses with different centre frequencies and lengths, incident on the finite nonlinear periodic layered dielectric structures, have been analysed. It is shown that at the backward emission grows with the number of layers and can reach the level of the forward emission in the direction of combinatorial frequency scattering.