117 resultados para FERROELECTRIC DOMAINS
Resumo:
Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10-7 sm-1.
Resumo:
Freestanding BaTiO3 nanodots exhibit domain structures characterized by distinct quadrants of ferroelastic 90 domains in transmission electron microscopy (TEM) observations. These differ significantly from flux-closure domain patterns in the same systems imaged by piezoresponse force microscopy. Based upon a series of phase field simulations of BaTiO3 nanodots, we suggest that the TEM patterns result from a radial electric field arising from electron beam charging of the nanodot. For sufficiently large charging, this converts flux-closure domain patterns to quadrant patterns with radial net polarizations. Not only does this explain the puzzling patterns that have been observed in TEM studies of ferroelectric nanodots, but also suggests how to manipulate ferroelectric domain patterns via electron beams.
Resumo:
Large range ordered La(0.7)Sr(0.3)MnO(3) and SrRuO(3) epitaxial dots were fabricated by pulsed laser deposition using stencil masks and were embedded in ferroelectric PbTiO(3) epitaxial films. PbTiO(3) films grown on top of La(0.7)Sr(0.3)MnO(3) dots form arrays of 180 degrees domains that are switchable and have good ferroelectric properties. PbTiO(3) films made on top of SrRuO(3) dots have a monodomain polarization state. These observations point out the importance of the electronic properties of the bottom electrode in the selection of a preferential polarization state in epitaxial ferroelectric films and propose a route of fabricating large arrays of switchable 180 degrees ferroelectric domains. (C) 2011 American Institute of Physics. [doi:10.1063/1.3630232]
Resumo:
Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching.
Resumo:
The 71 degrees stripe domain patterns of epitaxial BiFeO3 thin films are frequently being explored to achieve new functional properties, dissimilar from the BiFeO3 bulk properties. We show that in-plane switching and out-of-plane switching of these domains behave very differently. In the in-plane configuration the domains are very stable, whereas in the out-of-plane configuration the domains change their size and patterns, depending on the applied switching voltage frequency.
Resumo:
Naturally occurring boundaries between bundles of 90° stripe domains, which form in BaTiO3 lamellae on cooling through the Curie Temperature, have been characterized using both piezoresponse force microscopy (PFM) and scanning transmission electron microscopy (STEM). Detailed interpretation of the dipole configurations present at these boundaries (using data taken from PFM) shows that in the vast majority of cases they are composed of simple zigzag 180° domain walls. Topological information from STEM shows that occasionally domain bundle boundaries can support chains of dipole flux closure and quadrupole nanostructures, but these kinds of boundaries are comparatively rare; when such chains do exist, it is notable that singularities at the cores of the dipole
structures are avoided. The symmetry of the boundary shows that diads and centers of inversion exist at positions where core singularities should have been expected.
Resumo:
We report on differential etching behavior of the different orientations of the polarization in BiFeO3 (BFO), similar to other ferroelectrics, such as LiNbO3. We show how this effect can be used to fabricate epitaxial BiFeO3 nanostructures. By means of piezoresponse force microscopy (PFM) domains of arbitrary shape and size can be poled in an epitaxial BiFeO3 film, which are then reproduced in the film morphology by differential etching. Structures with a lateral size smaller than 200 nm were fabricated and very good retention properties as well as a highly increased piezoelectric response were detected by PFM. (C) 2011 American Institute of Physics. [doi:10.1063/1.3630027]
Resumo:
We report the experimental measurement of domains in single- crystal nanocolumns of ferroelectric BaTiO3, together with a theory of domain size scaling in three- dimensional structures which explains the observations.
Resumo:
The origin of the unusual 90 degrees ferroelectric/ferroelastic domains, consistently observed in recent studies on mesoscale and nanoscale free-standing single crystals of BaTiO3 [Schilling , Phys. Rev. B 74, 024115 (2006); Schilling , Nano Lett. 7, 3787 (2007)], has been considered. A model has been developed which postulates that the domains form as a response to elastic stress induced by a surface layer which does not undergo the paraelectric-ferroelectric cubic-tetragonal phase transition. This model was found to accurately account for the changes in domain periodicity as a function of size that had been observed experimentally. The physical origin of the surface layer might readily be associated with patterning damage, seen in experiment; however, when all evidence of physical damage is removed from the BaTiO3 surfaces by thermal annealing, the domain configuration remains practically unchanged. This suggests a more intrinsic origin, such as the increased importance of surface tension at small dimensions. The effect of surface tension is also shown to be proportional to the difference in hardness between the surface and the interior of the ferroelectric. The present model for surface-tension induced twinning should also be relevant for finely grained or core-shell structured ceramics.
Resumo:
Almost free-standing single crystal mesoscale and nanoscale dots of ferroelectric BaTiO3 have been made by direct focused ion beam patterning of bulk single crystal material. The domain structures which appear in these single crystal dots, after cooling through the Curie temperature, were observed to form into quadrants, with each quadrant consisting of fine 90° stripe domains. The reason that these rather complex domain configurations form is uncertain, but we consider and discuss three possibilities for their genesis: first, that the quadrant features initially form to facilitate field-closure, but then develop 90° shape compensating stripe domains in order to accommodate disclination stresses; second, that they are the result of the impingement of domain packets which nucleate at the sidewalls of the dots forming “Forsbergh” patterns (essentially the result of phase transition kinetics); and third, that 90° domains form to conserve the shape of the nanodot as it is cooled through the Curie temperature but arrange into quadrant packets in order to minimize the energy associated with uncompensated surface charges (thus representing an equilibrium state). While the third model is the preferred one, we note that the second and third models are not mutually exclusive.
Resumo:
Using piezoresponse force microscopy, we have observed the progressive development of ferroelectric flux-closure domain structures and Landau−Kittel-type domain patterns, in 300 nm thick single-crystal BaTiO3 platelets. As the microstructural development proceeds, the rate of change of the domain configuration is seen to decrease exponentially. Nevertheless, domain wall velocities throughout are commensurate with creep processes in oxide ferroelectrics. Progressive screening of macroscopic destabilizing fields, primarily the surface-related depolarizing field, successfully describes the main features of the observed kinetics. Changes in the separation of domain-wall vertex junctions prompt a consideration that vertex−vertex interactions could be influencing the measured kinetics. However, the expected dynamic signatures associated with direct vertex−vertex interactions are not resolved. If present, our measurements confine the length scale for interaction between vertices to the order of a few hundred nanometers.
Resumo:
The periodicity of 180 degrees. stripe domains as a function of crystal thickness scales with the width of the domain walls, both for ferroelectric and for ferromagnetic materials. Here we derive an analytical expression for the generalized ferroic scaling factor and use this to calculate the domain wall thickness and gradient coefficients ( exchange constants) in some ferroelectric and ferromagnetic materials. We then use these to discuss some of the wider implications for the physics of ferroelectric nanodevices and periodically poled photonic crystals.
Resumo:
Bundles of 90° stripe domains have been observed to form into distinct groups, or bands, in mesoscale BaTiO3 single crystal dots. Vector piezoresponse force microscopy (PFM) shows that each band region, when considered as a single entity, possesses a resolved polarization that lies approximately along the pseudocubic direction; antiparallel alignment of this resultant polarization in adjacent bands means that these regions can be considered as 180° “superdomains.” For dots with sidewall dimensions below ~2 microns, Landau–Kittel like scaling in the width of these superdomains was observed, strongly suggesting that they form in response to lateral depolarizing fields. In larger dot structures, scaling laws break down. We have rationalized these observations by considering changes in the driving force for the adoption of equilibrium superdomain periodicities implied by Landau–Kittel-free energy models; we conclude that the formation of ordered bands of superdomains is a uniquely meso/nanoscale phenomenon. We also note that the superdomain bands found by PFM imaging in air contrast with the quadrant arrangements seen previously by Schilling et al. (Nano Lett., 9, 3359 (2009)) through transmission electron microscopy imaging in vacuum. The importance of the exact nature of the boundary conditions in determining the domain patterns that spontaneously form in nanostructures is therefore clearly implied.
Resumo:
The influence of both compressive and tensile epitaxial strain along with the electrical boundary conditions on the ferroelastic and ferroelectric domain patterns of bismuth ferrite films was studied. BiFeO3 films were grown on SrTiO3(001), DyScO3(110), GdScO3(110), and SmScO3(110) substrates to investigate the effect of room temperature in-plane strain ranging from -1.4% to +0.75%. Piezoresponse force microscopy, transmission electron microscopy, x-ray diffraction measurements, and ferroelectric polarization measurements were performed to study the properties of the films. We show that BiFeO3 films with and without SrRuO3 bottom electrode have different growth mechanisms and that in both cases reduction of the domain variants is possible. Without SrRuO3, stripe domains with reduced variants are formed on all rare earth scandate substrates because of their monoclinic symmetry. In addition, tensile strained films exhibit a rotation of the unit cell with increasing film thickness. On the other side, the presence of SrRuO3 promotes step flow growth of BiFeO3. In case of vicinal SrTiO3 and DyScO3 substrates with high quality SrRuO3 bottom electrode and a low miscut angle of approximate to 0.15 degrees we observed suppression of the formation of certain domain variants. The quite large in-plane misfit of SrRuO3 with GdScO3 and SmScO3 prevents the growth of high quality SrRuO3 films and subsequent domain variants reduction in BiFeO3 on these substrates, when SrRuO3 is used as a bottom electrode.