130 resultados para Ecological Assessments
Resumo:
Ecological coherence is a multifaceted conservation objective that includes some potentially conflicting concepts. These concepts include the extent to which the network maximises diversity (including genetic diversity) and the extent to which protected areas interact with non-reserve locations. To examine the consequences of different selection criteria, the preferred location to complement protected sites was examined using samples taken from four locations around each of two marine protected areas: Strangford Lough and Lough Hyne, Ireland. Three different measures of genetic distance were used: FST, Dest and a measure of allelic dissimilarity, along with a direct assessment of the total number of alleles in different candidate networks. Standardized site scores were used for comparisons across methods and selection criteria. The average score for Castlehaven, a site relatively close to Lough Hyne, was highest, implying that this site would capture the most genetic diversity while ensuring highest degree of interaction between protected and unprotected sites. Patterns around Strangford Lough were more ambiguous, potentially reflecting the weaker genetic structure around this protected area in comparison to Lough Hyne. Similar patterns were found across species with different dispersal capacities, indicating that methods based on genetic distance could be used to help maximise ecological coherence in reserve networks. ⺠Ecological coherence is a key component of marine protected area network design. ⺠Coherence contains a number of competing concepts. ⺠Genetic information from field populations can help guide assessments of coherence. ⺠Average choice across different concepts of coherence was consistent among species. ⺠Measures can be combined to compare the coherence of different network designs.
Resumo:
Throughout the European Union, the EC Habitats Directive requires that member states undertake national surveillance of designated species. Despite biological connections between-populations across-borders, national assessments need not be co-ordinated in any way. We conducted a trans-boundary assessment of the status of Eurasian otters (Lutra lutra) aimed at providing consistency across a single biogeographical unit, i.e. the island of Ireland, comprising two states, i.e. the Republic of Ireland and the United Kingdom (Northern Ireland). Our aim was to ensure consistency with previous assessments conducted separately in each state, and permit each Government to fulfil their separate statutory reporting commitments. The species range increased by 23% from 1996–2006 and 2007–11. The population estimate of 9400 [95%CI 8700–12,200] breeding females during 2010/11 was not significantly different from 8300 [95%CI 7600–9800] breeding females established as a baseline during 1981–82. Modelling of species-habitat associations suggested that available habitat was not limiting and no putative pressures recorded at sites surveyed negatively affected species occurrence. Thus, under the statutory parameters for assessing a species’ conservation status, i.e. range, population, habitat and future prospects, the otter was judged to be in ‘Favourable’ status throughout Ireland and in both discrete political jurisdictions. Thus, we provide a trans-boundary test case for EU member states that share habitats and species across ecoregions, ensuring conservation assessment data are standardised, synchronised, spatially consistent and, therefore, biologically relevant without compromising legal and administrative autonomy within separate jurisdictions.
Resumo:
Summary statistics continue to play an important role in identifying and monitoring patterns and trends in educational inequalities between differing groups of pupils over time. However, this article argues that their uncritical use can also encourage the labelling of whole groups of pupils as ‘underachievers’ or ‘overachievers’ as the findings of group-level data are simply applied to individual group members, a practice commonly termed the ‘ecological fallacy’. Some of the adverse consequences of this will be outlined in relation to current debates concerning gender and ethnic differences in educational attainment. It will be argued that one way of countering this uncritical use of summary statistics and the ecological fallacy that it tends to encourage, is to make much more use of the principles and methods of what has been termed ‘exploratory data analysis’. Such an approach is illustrated through a secondary analysis of data from the Youth Cohort Study of England and Wales, focusing on gender and ethnic differences in educational attainment. It will be shown that, by placing an emphasis on the graphical display of data and on encouraging researchers to describe those data more qualitatively, such an approach represents an essential addition to the use of simple summary statistics and helps to avoid the limitations associated with them.
Resumo:
Aims/Hypothesis: To describe the epidemiology of childhood-onset Type 1 (insulin-dependent) diabetes in Europe, the EURODIAB collaborative group has established prospective, geographically-defined registers of children diagnosed under 15 years. A total of 16,362 cases were registered by 44 centres during the period 1989-1994. The registers cover a population of approximately 28 million children with most European countries represented. Methods In most centres a primary and a secondary source of ascertainment were used so that the completeness of registration could be assessed by the capture-recapture method. Ecological correlation and regression analyses were used to study the relationship between incidence and various environmental, health and economic indicators. Findings: The standardised average annual incidence rate during the period 1989-94 ranged from 3.2 cases per 100,000 per annum in the Former Yugoslavian Republic of Macedonia to 40.2 cases per 100,000 per annum in Finland. Indicators of national prosperity such as infant mortality (r= -0.64) and gross domestic product (r= 0.58) were most strongly and significantly correlated with incidence rate, and previously-reported associations with coffee consumption (r= 0.51), milk consumption (r= 0.58) and latitude (r= 0.40) were also observed. Conclusion/Interpretation: The wide variation in childhood type 1 diabetes incidence rates within Europe could be partially explained by indicators of national prosperity. These indicators could reflect differences in environmental risk factors such as nutrition or lifestyle that are important in determining a country's incidence rate.
Resumo:
This paper evaluates how long-term records could and should be utilized in conservation policy and practice. Traditionally, there has been an extremely limited use of long-term ecological records (greater than 50 years) in biodiversity conservation. There are a number of reasons why such records tend to be discounted, including a perception of poor scale of resolution in both time and space, and the lack of accessibility of long temporal records to non-specialists. Probably more important, however, is the perception that even if suitable temporal records are available, their roles are purely descriptive, simply demonstrating what has occurred before in Earth’s history, and are of little use in the actual practice of conservation. This paper asks why this is the case and whether there is a place for the temporal record in conservation management. Key conservation initiatives related to extinctions, identification of regions of greatest diversity/threat, climate change and biological invasions are addressed. Examples of how a temporal record can add information that is of direct practicable applicability to these issues are highlighted. These include (i) the identification of species at the end of their evolutionary lifespan and therefore most at risk from extinction, (ii) the setting of realistic goals and targets for conservation ‘hotspots’, and (iii) the identification of various management tools for the maintenance/restoration of a desired biological state. For climate change conservation strategies, the use of long-term ecological records in testing the predictive power of species envelope models is highlighted, along with the potential of fossil records to examine the impact of sea-level rise. It is also argued that a long-term perspective is essential for the management of biological invasions, not least in determining when an invasive is not an invasive. The paper concludes that often inclusion of a long-term ecological perspective can provide a more scientifically defensible basis for conservation decisions than the one based only on contemporary records. The pivotal issue of this paper is not whether long-term records are of interest to conservation biologists, but how they can actually be utilized in conservation practice and policy.