80 resultados para ENDOTHELIUM
Resumo:
Recent evidence indicates that the anti-angiogenic peptide endostatin may modulate some of the vasomodulatory effects of vascular endothelial growth factor (VEGF) in the retina, including reduction of blood retinal barrier function although it remains uncertain how endostatin promotes endothelial barrier properties. The current study has sought to examine how physiological levels of endostatin alters VEGF-induced inner BRB function using an in vitro model system and evaluation of occludin and ZO-1 regulatory responses. In addition, the ability of exogenous endostatin to regulate VEGF-mediated retinal vascular permeability in vivo was investigated.
Retinal microvascular endothelial cells (RMEC's) were exposed to various concentrations of endostatin. In parallel studies, RMEC monolayers were treated with vascular endothelial growth factor (VEGF165). Vasopermeability of RMEC monolayers and occludin expression were determined.
Blood retinal barrier integrity was quantified in mouse retina using Evans Blue assay following intravitreal delivery of VEGF165, endostatin or a VEGF/endostatin combination.
Endostatin increased the levels of expression of occludin whilst causing no significant change in FITC-dextran flux across the RMEC monolayer. Endostatin reversed the effects of VEGF165-enhanced permeability between microvascular endothelial cells and induced phosphorylation of occludin. Evans Blue leakage from retinas treated with VEGF was 2.0 fold higher than that of contra-lateral untreated eyes (P<0.05) while leakage of eyes from endostatin treated animals was unchanged. When eyes were injected with a combination of VEGF165 and endostatin there was a significant reduction in retinal vasopermeability when compared to VEGF-injected eyes (P<0.05).
We conclude that endostatin can promote integrity of the retinal endothelial barrier, possibly by preventing VEGF-mediated alteration of tight junction integrity. This suggests that endostatin may be of clinical benefit in ocular disorders where significant retinal vasopermeability changes are present.
Resumo:
Background: Current guidelines encourage the use of statins to reduce the risk of cardiovascular disease in diabetic patients; however the impact of these drugs on diabetic retinopathy is not well defined. Moreover, pleiotropic effects of statins on the highly specialised retinal microvascular endothelium remain largely unknown. The objective of this study was to investigate the effects of clinically relevant concentrations of simvastatin on retinal endothelium in vitro and in vivo.
Methods and Findings: Retinal microvascular endothelial cells (RMECs) were treated with 0.01–10 µM simvastatin and a biphasic dose-related response was observed. Low concentrations enhanced microvascular repair with 0.1 µM simvastatin significantly increasing proliferation (p<0.05), and 0.01 µM simvastatin significantly promoting migration (p<0.05), sprouting (p<0.001), and tubulogenesis (p<0.001). High concentration of simvastatin (10 µM) had the opposite effect, significantly inhibiting proliferation (p<0.01), migration (p<0.01), sprouting (p<0.001), and tubulogenesis (p<0.05). Furthermore, simvastatin concentrations higher than 1 µM induced cell death. The mouse model of oxygen-induced retinopathy was used to investigate the possible effects of simvastatin treatment on ischaemic retinopathy. Low dose simvastatin(0.2 mg/Kg) promoted retinal microvascular repair in response to ischaemia by promoting intra-retinal re-vascularisation (p<0.01). By contrast, high dose simvastatin(20 mg/Kg) significantly prevented re-vascularisation (p<0.01) and concomitantly increased pathological neovascularisation (p<0.01). We also demonstrated that the pro-vascular repair mechanism of simvastatin involves VEGF stimulation, Akt phosphorylation, and nitric oxide production; and the anti-vascular repair mechanism is driven by marked intracellular cholesterol depletion and related disorganisation of key intracellular structures.
Conclusions: A beneficial effect of low-dose simvastatin on ischaemic retinopathy is linked to angiogenic repair reducing ischaemia, thereby preventing pathological neovascularisation. High-dose simvastatin may be harmful by inhibiting reparative processes and inducing premature death of retinal microvascular endothelium which increases ischaemia-induced neovascular pathology. Statin dosage should be judiciously monitored in patients who are diabetic or are at risk of developing other forms of proliferative retinopathy.
Resumo:
Objective: Endothelial function may be impaired in critical illness. We hypothesized that impaired endothelium-dependent vasodilatation is a predictor of mortality in critically ill patients.
Design: Prospective observational cohort study.
Setting: Seventeen-bed adult intensive care unit in a tertiary referral university teaching hospital. Patients: Patients were recruited within 24 hrs of admission to the intensive care unit.
Interventions: The SphygmoCor Mx system was used to derive the aortic augmentation index from radial artery pulse pressure waveforms. Endothelium-dependent vasodilatation was calculated as the change in augmentation index in response to an endothelium-dependent vasodilator (salbutamol).
Measurements and Main Results: Demographics, severity of illness scores, and physiological parameters were collected. Statistically significant predictors of mortality identified using single regressor analysis were entered into a multiple logistic regression model. Receiver operator characteristic curves were generated. Ninety-four patients completed the study. There were 80 survivors and 14 nonsurvivors. The Simplified Acute Physiology Score II, the Sequential Organ Failure Assessment score, leukocyte count, and endothelium-dependent vasodilatation conferred an increased risk of mortality. In logistic regression analysis, endothelium-dependent vasodilatation was the only predictor of mortality with an adjusted odds ratio of 26.1 (95% confidence interval [CI], 4.3-159.5). An endothelium-dependent vasodilatation value of 0.5% or less predicted intensive care unit mortality with a sensitivity of 79% (CI, 59-88%) and specificity of 98% (CI, 94-99%).
Conclusions: In vivo bedside assessment of endothelium-dependent vasodilatation is an independent predictor of mortality in the critically ill. We have shown it to be superior to other validated severity of illness scores with high sensitivity and specificity.
Resumo:
Background and purpose: Obestatin is a recently-discovered gastrointestinal peptide with established metabolic actions, which is linked to diabetes and may exert cardiovascular benefits. Here we aimed to investigate the specific effects of obestatin on vascular relaxation. Experimental approach: Cumulative relaxation responses to obestatin peptides were assessed in isolated rat aorta and mesenteric artery (n=8) in the presence/absence of selective inhibitors. Complementary studies were performed in cultured bovine aortic endothelial cells (BAEC). Key results: Obestatin peptides elicited concentration-dependent relaxation in both aorta and mesenteric artery. Responses to full-length obestatin(1-23) were greater than those to obestatin(1-10) and obestatin(11-23). Obestatin(1-23)-induced relaxation was attenuated by endothelial denudation, L-NAME (NO synthase inhibitor), high extracellular K(+) , GDP-ß-S (G protein inhibitor), MDL-12,330A (adenylate cyclase inhibitor), wortmannin (PI3K inhibitor), KN-93 (CaMKII inhibitor), ODQ (guanylate cyclase inhibitor) and iberiotoxin (BK(Ca) blocker), suggesting that it is mediated by an endothelium-dependent NO signalling cascade involving an adenylate cyclase-linked G protein-coupled receptor, PI3K/Akt, Ca(2+) -dependent eNOS activation, soluble guanylate cyclase and modulation of vascular smooth muscle K(+) . Supporting data from BAEC indicated that nitrite production, intracellular Ca(2+) and Akt phosphorylation were increased after exposure to obestatin(1-23). Relaxations to obestatin(1-23) were unaltered by inhibitors of candidate endothelium-derived hyperpolarising factors (EDHFs) and combined SK(Ca) /IK(Ca) blockade, suggesting that EDHF-mediated pathways were not involved. Conclusions and Implications: Obestatin produces significant vascular relaxation via specific activation of endothelium-dependent NO signalling. These actions may be important in normal regulation of vascular function and are clearly relevant to diabetes, a condition characterised by endothelial dysfunction and cardiovascular complications.