70 resultados para EEG SIGNALS
Resumo:
We present the results of exploratory experiments using lexical valence extracted from brain using electroencephalography (EEG) for sentiment analysis. We selected 78 English words (36 for training and 42 for testing), presented as stimuli to 3 English native speakers. EEG signals were recorded from the subjects while they performed a mental imaging task for each word stimulus. Wavelet decomposition was employed to extract EEG features from the time-frequency domain. The extracted features were used as inputs to a sparse multinomial logistic regression (SMLR) classifier for valence classification, after univariate ANOVA feature selection. After mapping EEG signals to sentiment valences, we exploited the lexical polarity extracted from brain data for the prediction of the valence of 12 sentences taken from the SemEval-2007 shared task, and compared it against existing lexical resources.
Resumo:
FcRI activation of mast cells is thought to involve Lyn and Syk kinases proximal to the receptor and the signaling complex organized by the linker for activation of T cells (LAT). We report here that FcRI also uses a Fyn kinase-dependent pathway that does not require Lyn kinase or the adapter LAT for its initiation, but is necessary for mast cell degranulation. Lyn-deficiency enhanced Fyn-dependent signals and degranulation, but inhibited the calcium response. Fyn-deficiency impaired degranulation, whereas Lyn-mediated signaling and calcium was normal. Thus, FcRI-dependent mast cell degranulation involves cross-talk between Fyn and Lyn kinases.
Resumo:
Spontaneous Ca2+-events were imaged in myocytes within intact retinal arterioles (diameter < 40 mu m) freshly isolated from rat eyes. Ca2+-sparks were often observed to spread across the width of these small cells, and could summate to produce prolonged Ca2+-oscillations and contraction. Application of cyclopiazonic acid (20 mu M) transiently increased spark frequency and oscillation amplitude, but inhibited both sparks and oscillations within 60 s. Both ryanodine (100 mu M) and tetracaine (100 mu M) reduced the frequency of sparks and oscillations, while tetracaine also reduced oscillation amplitude. None of these interventions affected spark amplitude. Nifedipine, which blocks store filling independently of any action on L-type Ca2+-channels in these cells, reduced the frequency and amplitude of both sparks and oscillations. Removal of external [Ca2+] (1 mM EGTA) also reduced the frequency of sparks and oscillations but these reductions were slower in onset than those in the presence of tetracaine or cyclopiazonic acid. Cyclopiazonic acid, nifedipine and low external [Ca2+] all reduced SR loading, as indicated by the amplitude of caffeine evoked Ca2+-transients. This study demonstrates for the first time that spontaneous Ca2+-events in small arterioles of the eye result from activation of ryanodine receptors in the SR and suggests that this activation is not tightly coupled to Ca2+-influx. The data also supports a model in which Ca2+-sparks act as building blocks for more prolonged, global Ca2+-signals. (c) 2006 Elsevier Ltd. All rights reserved.