60 resultados para E2
Resumo:
Energies of the 54 levels belonging to the (1s(2)2s(2)2p(6)) 3s(2)3p(5), 3s3p(6), 3s(2)3p(4)3d and 3s3p(5)3d configurations of Fe X have been calculated using the GRASP code of Dyall et al. (1989). Additionally, radiative rates, oscillator strengths, and line strengths are calculated for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among these levels. Comparisons are made with results available in the literature, and the accuracy of the data is assessed. Our energy levels are estimated to be accurate to better than 3%, whereas results for other parameters are probably accurate to better than 20%. Additionally, the agreement between measured and calculated lifetimes is better than 10%.
Resumo:
Energies and lifetimes are reported for the lowest 375 levels of five Br-like ions, namely SrIV, YV, ZrVI, NbVII, and MoVIII, mostly belonging to the 4s<sup>2</sup>4p<sup>5</sup>, 4s<sup>2</sup>4p<sup>4</sup>4ℓ, 4s4p<sup>6</sup>, 4s<sup>2</sup>4p<sup>4</sup>5ℓ, 4s<sup>2</sup>4p<sup>3</sup>4d<sup>2</sup>, 4s4p<sup>5</sup>4ℓ, and 4s4p<sup>5</sup>5ℓ configurations. Extensive configuration interaction has been included and the general-purpose relativistic atomic structure package (grasp) has been adopted for the calculations. Additionally, radiative rates are listed among these levels for all E1, E2, M1, and M2 transitions. From a comparison with the measurements, the majority of our energy levels are assessed to be accurate to better than 2%, although discrepancies between theory and experiment for a few are up to 6%. An accuracy assessment of the calculated radiative rates (and lifetimes) is more difficult, because no prior results exist for these ions.
Resumo:
We report calculations of energy levels, radiative decay rates, and lifetimes for transitions among the 3s23p5, 3s3p6, and 3s23p43d configurations of Cl-like W LVIII. The general-purpose relativistic atomic structure package (GRASP) has been adopted for our calculations. Comparisons are made with the most recent results of Mohan et al. (Can. J. Phys. 92, 177 (2014). doi:10.1139/cjp-2013-0348) and discrepancies in lifetimes are noted, up to four orders of magnitude in some instances. Our energy levels are estimated to be accurate to better than 0.5%, whereas results for radiative rates and lifetimes should be accurate to better than 20%.
Resumo:
CONTEXT: The formation of primordial follicles occurs during fetal life yet is critical to the determination of adult female fertility. Prior to this stage, germ cells proliferate, enter meiosis, and associate with somatic cells. Growth and survival factors implicated in these processes include activin A (INHBA), the neurotrophins BDNF and NT4 (NTF5), and MCL1. The prostaglandins have pleiotrophic roles in reproduction, notably in ovulation and implantation, but there are no data regarding roles for prostaglandins in human fetal ovarian development.
OBJECTIVE: The aim of the study was to investigate a possible role for prostaglandin (PG) E(2) in human fetal ovary development.
DESIGN: In vitro analysis of ovarian development between 8 and 20 wk gestation was performed.
MAIN OUTCOME MEASURE(S): The expression patterns of PG synthesis enzymes and the PGE(2) receptors EP2 and EP4 in the ovary were assessed, and downstream effects of PGE(2) on gene expression were analyzed.
RESULTS: Ovarian germ cells express the PG synthetic enzymes COX2 and PTGES as well as the EP2 and EP4 receptors, whereas COX1 is expressed by ovarian somatic cells. Treatment in vitro with PGE(2) increased the expression of BDNF mRNA 1.7 +/- 0.16-fold (P = 0.004); INHBA mRNA, 2.1 +/- 0.51-fold (P = 0.04); and MCL1 mRNA, 1.15 +/- 0.06-fold (P = 0.04), but not that of OCT4, DAZL, VASA, NTF5, or SMAD3.
CONCLUSIONS: These data indicate novel roles for PGE(2) in the regulation of germ cell development in the human ovary and show that these effects may be mediated by the regulation of factors including BDNF, activin A, and MCL1.
Resumo:
Aims. We present rates for all E1, E2, M1, and M2 transitions among the 295 fine-structure levels of the configurations 3d9, 3d84s, 3d74s2, 3d84p, and 3d74s4p, determined through an extensive configuration interaction calculation.
Methods. The CIV3 code developed by Hibbert and coworkers is used to determine for these levels configuration interaction wave functions with relativistic effects introduced through the Breit-Pauli approximation.
Results. Two different sets of calculations have been undertaken with different 3d and 4d functions to ascertain the effect of such variation. The main body of the text includes a representative selection of data, chosen so that key points can be discussed. Some analysis to assess the accuracy of the present data has been undertaken, including comparison with earlier calculations and the more limited range of experimental determinations. The full set of transition data is given in the supplementary material as it is very extensive.
Conclusions. We believe that the present transition data are the best currently available.
Resumo:
Calculations of energy levels, radiative rates and lifetimes are reported for eight ions of tungsten, i.e. S-like (W LIX) to F-like (W LXVI). A large number of levels have been considered for each ion and extensive configuration interaction has been included among a range of configurations. For the calculations, the general-purpose relativistic atomic structure package (. grasp) has been adopted, and radiative rates (as well as oscillator strengths and line strengths) are listed for all E1, E2, M1, and M2 transitions of the ions. Comparisons have been made with earlier available experimental and theoretical energies, although these are limited to only a few levels for most ions. Therefore for additional accuracy assessments, particularly for energy levels, analogous calculations have been performed with the flexible atomic code (. fac).
Resumo:
Energies and lifetimes are reported for the eight Br-like ions with 43≤Z≤50, namely Tc IX, Ru X, Rh XI, Pd XII, Ag XIII, Cd XIV, In XV, and Sn XVI. Results are listed for the lowest 375 levels, which mostly belong to the 4s24p5, 4s24p44ℓ, 4s4p6,4s24p45ℓ, 4s24p34d2, 4s4p54ℓ, and 4s4p55ℓ configurations. Extensive configuration interaction among 39 configurations (generating 3990 levels) has been considered and the general-purpose relativistic atomic structure package (grasp) has been adopted for the calculations. Radiative rates are listed for all E1, E2, M1, and M2 transitions involving the lowest 375 levels. Previous experimental and theoretical energies are available for only a few levels of three, namely Ru X, Rh XI and Pd XII. Differences with the measured energies are up to 4% but the present results are an improvement (by up to 0.3 Ryd) in comparison to other recently reported theoretical data. Similarly for radiative rates and lifetimes, prior results are limited to those involving only 31 levels of the 4s24p5, 4s24p44d, and 4s4p6 configurations for the last four ions. Moreover, there are generally no discrepancies with our results, although the larger calculations reported here differ by up to two orders of magnitude for a few transitions.
Resumo:
Calculations of energy levels, radiative rates and lifetimes are reported for 17 F-like ions with 37≤Z≤53. For brevity, results are only presented among the lowest 113 levels of the 2s22p5, 2s2p6, 2s22p43ℓ, 2s2p53ℓ, and 2p63ℓ configurations, although the calculations have been performed for up to 501 levels in each ion. The general-purpose relativistic atomic structure package (grasp) has been adopted for the calculations, and radiative rates (along with oscillator strengths and line strengths) are listed for all E1, E2, M1, and M2 transitions of the ions. Comparisons are made with earlier available experimental and theoretical energies, although these are limited to only a few levels for most ions. Therefore for additional accuracy assessments, particularly for energy levels, analogous calculations have been performed with the Flexible Atomic Code (fac), for up to 72 259 levels. Limited previous results are available for radiative rates for comparison purposes, and no large discrepancy is observed for any transition and/or ion.
Resumo:
We present a technique for measuring the radiative lifetimes of metastable states of negative ions that involves the use of a heavy-ion storage ring. The method has been applied to investigate the radiative decay of the np3 2P1/2 levels of Te–(n=5) and Se–(n=4) and the 3p3 2D state of Si– for which the J=3/2 and 5/2 levels were unresolved. All of these states are metastable and decay primarily by emission of E2 and M1 radiation. Multi Configuration Dirac-Hartree-Fock calculations of rates for the transitions in Te– and Se– yielded lifetimes of 0.45 s and 4.7 s, respectively. The measured values agree well with these predicted values. In the case of the 2D state of Si–, however, our measurement was only able to set a lower limit on the lifetime. The upper limit of the lifetime that can be measured with our apparatus is set by how long the ions can be stored in the ring, a limit determined by the rate of collisional detachment. Our lower limit of 1 min for the lifetime of the 2D state is consistent with both the calculated lifetimes of 162 s for the 2D3/2 level and 27.3 h for the 2D5/2 level reported by O'Malley and Beck and 14.5 h and 12.5 h, respectively, from our Breit-Pauli calculations.
Resumo:
Energies for the lowest 49 levels among the 1s(2) and 1snl (n = 2-5) configurations of Ar XVII have been calculated using the GRASP code of Dyall et al. (1989, Comput. Phys. Comm., 55, 424). Additionally, radiative rates, oscillator strengths, and line strengths are calculated for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among these levels. Furthermore, collision strengths have also been calculated for all the 1176 transitions among the above 49 levels using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2005, Comput. Phys. Commun., in preparation), over a wide energy range up to 580 Ryd. Resonances have been resolved in the threshold region, and effective collision strengths have been obtained over a wide temperature range up to log T-e = 7.2 K. Comparisons are made with the limited results available in the literature, and the accuracy of the data is assessed. Our energy levels are estimated to be accurate to better than 0.1%, whereas results for other parameters are probably accurate to better than 20%.
Resumo:
Radiative rates for electric dipole (E I), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 60 fine-structure levels of the (1s(2)) 2S(2)2p(5), 2s2p(6), and 2S(2)2p(4)3l configurations of F-like Mo XXXIV have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed over a wide energy range below 3200Ry, using the Dirac Atomic R-matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates and excitation rates are presented for all transitions, and for collision strengths for transitions from the lowest three levels to the higher lying levels. The accuracy of the present data is assessed to be similar to 20%.
Resumo:
Energies of the lowest 157 levels belonging to the (1s(2)) 2s(2)2p(6), 2s(2)p(5)3l, 2s(2)2p(5)4l, 2s(2)2p(5)4l, 2s2p(5)5l, 2s2p(6)4l and 2s2p(6)5l configurations of Fe XVII have been calculated using the GRASP code of Dyall et al. (1989). Additionally, radiative rates, oscillator strengths, and line strengths are calculated for all electric dipole (E I), magnetic dipole (M I), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among these levels. Comparisons are made with the results already available in the literature, and the accuracy of the data is assessed. Our energy levels are expected to be accurate to better than M whereas results for other parameters are probably accurate to better than 20%.
Resumo:
Energies for 524 levels of Ar XIII, 460 levels of Ar XIV and 156 levels of Ar XV have been calculated using the GRASP code of Dyall et al. (1989). Additionally, radiative rates, oscillator strengths, and line strengths are calculated for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among these levels. Comparisons are made with the limited results available in the literature, and the accuracy of the data is assessed. Our energy levels are estimated to be accurate to better than 1%, whereas results for other parameters are probably accurate to better than 20%. Additionally, the level lifetimes derived from our radiative rates are in excellent agreement with measured values.
Resumo:
Energies of the 700 lowest levels in Fe XX have been obtained using the multiconfiguration Dirac-Fock method. Configuration interaction method on the basis set of transformed radial orbitals with variable parameters taking into account relativistic corrections in the Breit-Pauli approximation was used to crosscheck our presented results. Transition probabilities, oscillator and line strengths are presented for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transitions among these levels. The total radiative transition probabilities from each level are also provided. Results are compared with data compiled by NIST and with other theoretical work.
Resumo:
Energy levels and the corresponding transition probabilities for allowed and forbidden transitions among the levels of the ground configuration and first 23 excited configurations of fluorine-like Fe XVIII have been calculated using the multiconfigurational Dirac-Fock GRASP code. A total of 379 lowest bound levels of Fe XVIII is presented, and the energy levels are identified in spectroscopic notations. Transition probabilities, oscillator strengths and line strengths for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transitions among these 379 levels are also presented. The calculated energy levels and transition probabilities are compared with experimental data.