43 resultados para Dynamic Models
Resumo:
Traditionally the simulation of the thermodynamic aspects of the internal combustion engine has been undertaken using one-dimensional gas-dynamic models to represent the intake and exhaust systems. CFD analysis of engines has been restricted to modelling of in-cylinder flow structures. With the increasing accessibility of CFD software it is now worth considering its use for complete gas-dynamic engine simulation. This paper appraises the accuracy of various CFD models in comparison to a 1D gas-dynamic simulation. All of the models are compared to experimental data acquired on an apparatus that generates a single gas-dynamic pressure wave. The progress of the wave along a constant area pipe and its subsequent reflection from the open pipe end are recorded with a number of high speed pressure transducers. It was found that there was little to choose between the accuracy of the 1D model and the best CFD model. The CFD model did not require experimentally derived loss coefficients to accurately represent the open pipe end; however, it took several hundred times longer to complete its analysis. The best congruency between the CFD models and the experimental data was achieved using the RNG k-e turbulence model. The open end of the pipe was most effectively represented by surrounding it with a relatively small volume of cells connected to the rest of the environment using a pressure boundary.
Resumo:
Polymer extrusion is a complex process and the availability of good dynamic models is key for improved system operation. Previous modelling attempts have failed adequately to capture the non-linearities of the process or prove too complex for control applications. This work presents a novel approach to the problem by the modelling of extrusion viscosity and pressure, adopting a grey box modelling technique that combines mechanistic knowledge with empirical data using a genetic algorithm approach. The models are shown to outperform those of a much higher order generated by a conventional black box technique while providing insight into the underlying processes at work within the extruder.
Resumo:
This paper introduces a novel modelling framework for identifying dynamic models of systems that are under feedback control. These models are identified under closed-loop conditions and produce a joint representation that includes both the plant and controller models in state space form. The joint plant/controller model is identified using subspace model identification (SMI), which is followed by the separation of the plant model from the identified one. Compared to previous research, this work (i) proposes a new modelling framework for identifying closed-loop systems, (ii) introduces a generic structure to represent the controller and (iii) explains how that the new framework gives rise to a simplified determination of the plant models. In contrast, the use of the conventional modelling approach renders the separation of the plant model a difficult task. The benefits of using the new model method are demonstrated using a number of application studies.
Resumo:
In 2004 nineteen scientists from fourteen institutions in seven countries
collaborated in the landmark study described in chapter 2 (Thomas et al., 2004a). This chapter provides an overview of results of studies published subsequently and assesses how much, and why, new results differ from those of Thomas et al.
Some species distribution modeling (SDM) studies are directly comparable to the Thomas et al. estimates. Others using somewhat different methods nonetheless illuminate whether the original estimates were of the right order of magnitude. Climate similarity models (Williams et al., 2007; Williams and Jackson, 2007), biome, and vegetation dynamic models (Perry and Enright, 2006) have also been
applied in the context of climate change, providing interesting opportunities
for comparison and cross-validation with results from SDMs.
This chapter concludes with an assessment of whether the range of extinction risk estimates presented in 2004 can be narrowed, and whether the mean estimate should be revised upward or downward. To set the stage for these analyses, the chapter begins with brief reviews of advances in climate modeling and species modeling since 2004.
Resumo:
Natural gas (NG) network and electric network are becoming tightly integrated by microturbines in the microgrid. Interactions between these two networks are not well captured by the traditional microturbine (MT) models. To address this issue, two improved models for single-shaft MT and split-shaft MT are proposed in this paper. In addition, dynamic models of the hybrid natural gas and electricity system (HGES) are developed for the analysis of their interactions. Dynamic behaviors of natural gas in pipes are described by partial differential equations (PDEs), while the electric network is described by differential algebraic equations (DAEs). So the overall network is a typical two-time scale dynamic system. Numerical studies indicate that the two-time scale algorithm is faster and can capture the interactions between the two networks. The results also show the HGES with a single-shaft MT is a weakly coupled system in which disturbances in the two networks mainly influence the dc link voltage of the MT, while the split-shaft MT is a strongly coupled system where the impact of an event will affect both networks.
Resumo:
We study the residential demand for electricity and gas, working with nationwide household-level data that cover recent years, namely 1997-2007. Our dataset is a mixed panel/multi-year cross-sections of dwellings/households in the 50 largest metropolitan areas in the United States as of 2008. We estimate static and dynamic models of electricity and gas demand. We find strong household response to energy prices, both in the short and long term. From the static models, we get estimates of the own price elasticity of electricity demand in the -0.860 to -0.667 range, while the own price elasticity of gas demand is -0.693 to -0.566. These results are robust to a variety of checks. Contrary to earlier literature (Metcalf and Hassett, 1999; Reiss and White, 2005), we find no evidence of significantly different elasticities across households with electric and gas heat. The price elasticity of electricity demand declines with income, but the magnitude of this effect is small. These results are in sharp contrast to much of the literature on residential energy consumption in the United States, and with the figures used in current government agency practice. Our results suggest that there might be greater potential for policies which affect energy price than may have been previously appreciated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Development of reliable methods for optimised energy storage and generation is one of the most imminent challenges in modern power systems. In this paper an adaptive approach to load leveling problem using novel dynamic models based on the Volterra integral equations of the first kind with piecewise continuous kernels. These integral equations efficiently solve such inverse problem taking into account both the time dependent efficiencies and the availability of generation/storage of each energy storage technology. In this analysis a direct numerical method is employed to find the least-cost dispatch of available storages. The proposed collocation type numerical method has second order accuracy and enjoys self-regularization properties, which is associated with confidence levels of system demand. This adaptive approach is suitable for energy storage optimisation in real time. The efficiency of the proposed methodology is demonstrated on the Single Electricity Market of Republic of Ireland and Northern Ireland.
Resumo:
In this paper, we investigate the remanufacturing problem of pricing single-class used products (cores) in the face of random price-dependent returns and random demand. Specifically, we propose a dynamic pricing policy for the cores and then model the problem as a continuous-time Markov decision process. Our models are designed to address three objectives: finite horizon total cost minimization, infinite horizon discounted cost, and average cost minimization. Besides proving optimal policy uniqueness and establishing monotonicity results for the infinite horizon problem, we also characterize the structures of the optimal policies, which can greatly simplify the computational procedure. Finally, we use computational examples to assess the impacts of specific parameters on optimal price and reveal the benefits of a dynamic pricing policy. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Presented is a study that expands the body of knowledge on the effect of in-cycle speed fluctuations on performance of small engines. It uses the engine and drivetrain models developed previously by Callahan, et al. (1) to examine a variety of engines. The predicted performance changes due to drivetrain effects are shown in each case, and conclusions are drawn from those results. The single-cylinder, high performance four-stroke engine showed significant changes in predicted performance compared to the prediction with zero speed fluctuation in the model. Measured speed fluctuations from a firing Yamaha YZ426 engine were applied to the simulation in addition to data from a simple free mass model. Both methods predicted similar changes in performance. The multiple-cylinder, high performance two-stroke engine also showed significant changes in performance depending on the firing configuration. With both engines, the change in performance diminished with increasing mean engine speed. The low output, single-cylinder two-stroke engine simulation showed only a negligible change in performance, even with high amplitude speed fluctuations. Because the torque versus engine speed characteristic for the engine was so flat, this was expected. The cross-charged, multi-cylinder two-stroke engine also showed only a negligible change in performance. In this case, the combination of a relatively high inertia rotating assembly and the multiple cylinder firing events within the revolution smoothing the torque pulsations reduced the speed fluctuation amplitude itself.
Resumo:
This paper investigates the two-stage stepwise identification for a class of nonlinear dynamic systems that can be described by linear-in-the-parameters models, and the model has to be built from a very large pool of basis functions or model terms. The main objective is to improve the compactness of the model that is obtained by the forward stepwise methods, while retaining the computational efficiency. The proposed algorithm first generates an initial model using a forward stepwise procedure. The significance of each selected term is then reviewed at the second stage and all insignificant ones are replaced, resulting in an optimised compact model with significantly improved performance. The main contribution of this paper is that these two stages are performed within a well-defined regression context, leading to significantly reduced computational complexity. The efficiency of the algorithm is confirmed by the computational complexity analysis, and its effectiveness is demonstrated by the simulation results.
Resumo:
In a model commonly used in dynamic traffic assignment the link travel time for a vehicle entering a link at time t is taken as a function of the number of vehicles on the link at time t. In an alternative recently introduced model, the travel time for a vehicle entering a link at time t is taken as a function of an estimate of the flow in the immediate neighbourhood of the vehicle, averaged over the time the vehicle is traversing the link. Here we compare the solutions obtained from these two models when applied to various inflow profiles. We also divide the link into segments, apply each model sequentially to the segments and again compare the results. As the number of segments is increased, the discretisation refined to the continuous limit, the solutions from the two models converge to the same solution, which is the solution of the Lighthill, Whitham, Richards (LWR) model for traffic flow. We illustrate the results for different travel time functions and patterns of inflows to the link. In the numerical examples the solutions from the second of the two models are closer to the limit solutions. We also show that the models converge even when the link segments are not homogeneous, and introduce a correction scheme in the second model to compensate for an approximation error, hence improving the approximation to the LWR model.
Resumo:
Modelling patient flow in health care systems is vital in understanding the system activity and may therefore prove to be useful in improving their functionality. An extensively used measure is the average length of stay which, although easy to calculate and quantify, is not considered appropriate when the distribution is very long-tailed. In fact, simple deterministic models are generally considered inadequate because of the necessity for models to reflect the complex, variable, dynamic and multidimensional nature of the systems. This paper focuses on modelling length of stay and flow of patients. An overview of such modelling techniques is provided, with particular attention to their impact and suitability in managing a hospital service.