35 resultados para Distribution network reconfiguration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reduction in the time required to locate and restore faults on a utility's distribution network improves the customer minutes lost (CML) measurement and hence brings direct cost savings to the operating company. The traditional approach to fault location involves fault impedance determination from high volume waveform files dispatched across a communications channel to a central location for processing and analysis. This paper examines an alternative scheme where data processing is undertaken locally within a recording instrument thus reducing the volume of data to be transmitted. Processed event fault reports may be emailed to relevant operational staff for the timely repair and restoration of the line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the voltage and reactive power issues surrounding the connection of Distributed Generation (DG) on the low-voltage (LV) distribution network. The presented system-wide voltage control algorithm consists of three stages. Firstly available reactive power reserves are utilized. Then, if required, DG active power output is curtailed. Finally, curtailment of non-critical site demand is considered. The control methodology is tested on a variant of the 13-bus IEEE Node Radial Distribution Test Feeder. The presented control algorithm demonstrated that the distribution system operator (DSO) can maintain voltage levels within a desired statutory range by dispatching reactive power from DG or network devices. The practical application of the control strategy is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of smart grid technologies and appropriate charging strategies are key to accommodating large numbers of Electric Vehicles (EV) charging on the grid. In this paper a general framework is presented for formulating the EV charging optimization problem and three different charging strategies are investigated and compared from the perspective of charging fairness while taking into account power system constraints. Two strategies are based on distributed algorithms, namely, Additive Increase and Multiplicative Decrease (AIMD), and Distributed Price-Feedback (DPF), while the third is an ideal centralized solution used to benchmark performance. The algorithms are evaluated using a simulation of a typical residential low voltage distribution network with 50% EV penetration. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider charging strategies that mitigate the impact of domestic charging of EVs on low-voltage distribution networks and which seek to reduce peak power by responding to time-ofday pricing. The strategies are based on the distributed Additive Increase and Multiplicative Decrease (AIMD) charging algorithms proposed in [5]. The strategies are evaluated using simulations conducted on a custom OpenDSS-Matlab platform for a typical low voltage residential feeder network. Results show that by using AIMD based smart charging 50% EV penetration can be accommodated on our test network, compared to only 10% with uncontrolled charging, without needing to reinforce existing network infrastructure. © Springer-Verlag Berlin Heidelberg 2013.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Smart Grids are characterized by the application of information communication technology (ICT) to solve electrical energy challenges. Electric power networks span large geographical areas, thus a necessary component of many Smart Grid applications is a wide area network (WAN). For the Smart Grid to be successful, utilities must be confident that the communications infrastructure is secure. This paper describes how a WAN can be deployed using WiMAX radio technology to provide high bandwidth communications to areas not commonly served by utility communications, such as generators embedded in the distribution network. A planning exercise is described, using Northern Ireland as a case study. The suitability of the technology for real-time applications is assessed using experimentally obtained latency data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As one of the most successfully commercialized distributed energy resources, the long-term effects of microturbines (MTs) on the distribution network has not been fully investigated due to the complex thermo-fluid-mechanical energy conversion processes. This is further complicated by the fact that the parameter and internal data of MTs are not always available to the electric utility, due to different ownerships and confidentiality concerns. To address this issue, a general modeling approach for MTs is proposed in this paper, which allows for the long-term simulation of the distribution network with multiple MTs. First, the feasibility of deriving a simplified MT model for long-term dynamic analysis of the distribution network is discussed, based on the physical understanding of dynamic processes that occurred within MTs. Then a three-stage identification method is developed in order to obtain a piecewise MT model and predict electro-mechanical system behaviors with saturation. Next, assisted with the electric power flow calculation tool, a fast simulation methodology is proposed to evaluate the long-term impact of multiple MTs on the distribution network. Finally, the model is verified by using Capstone C30 microturbine experiments, and further applied to the dynamic simulation of a modified IEEE 37-node test feeder with promising results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper develops an integrated optimal power flow (OPF) tool for distribution networks in two spatial scales. In the local scale, the distribution network, the natural gas network, and the heat system are coordinated as a microgrid. In the urban scale, the impact of natural gas network is considered as constraints for the distribution network operation. The proposed approach incorporates unbalance three-phase electrical systems, natural gas systems, and combined cooling, heating, and power systems. The interactions among the above three energy systems are described by energy hub model combined with components capacity constraints. In order to efficiently accommodate the nonlinear constraint optimization problem, particle swarm optimization algorithm is employed to set the control variables in the OPF problem. Numerical studies indicate that by using the OPF method, the distribution network can be economically operated. Also, the tie-line power can be effectively managed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Irish hospitals sweepstake was established by statute in the Irish Free State in 1930 to fund the state’s hospital service. The vast majority of tickets were sold outside Ireland, particularly in countries where such gambling was illegal at the time. Initially the largest market was in the United Kingdom, but following the introduction of restrictive legislation there in 1934, the promoters of the sweepstake turned their attentions to North America and after 1936 the United States became the largest source of contributions to the Irish sweep. This article examines a number of factors concerning the relationship of the Irish sweep with the USA, including: an effort to estimate the amount of money contributed to the sweep by Americans; the role of the Irish diaspora and of prominent republicans, including Joseph McGarrity and Connie Neenan, in the illegal ticket distribution network; the efforts of American Federal agencies and government departments to disrupt the sweepstake organisation in America; how the sweep was used by those who sought to legalise gambling in the USA; the attitudes of both the Irish and American governments to the sweep’s activities in America; and how the legalisation of gambling in America brought about the demise of the Irish sweep.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The amount of distributed generation connected to the distribution network is increasing. To use this resource more effectively, splitting of the distribution network, or islanding the system, for prevention of power outages is being considered by some utilities. In this paper an islanding method that avoids out-ofsynchronism re-closure is proposed. The island is kept in synchronism with the rest of the utility while it is not electrically connected. This is referred to as synchronous islanded operation. A phase difference control algorithm, developed by the authors, was tested in a single set scenario on a 50-kVA diesel generator using two different governors. These are the “standard product” variable gain governor of the diesel generator and a governor developed by the authors, which utilizes supplementary inputs in addition to engine speed. The results show that phase difference can be controlled within acceptable limits, both in steady state and after load disturbances are applied. The advantages of employing supplementary governor inputs are fully evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Loss-of-mains protection is an important component of the protection systems of embedded generation. The role of loss-of-mains is to disconnect the embedded generator from the utility grid in the event that connection to utility dispatched generation is lost. This is necessary for a number of reasons, including the safety of personnel during fault restoration and the protection of plant against out-of-synchronism reclosure to the mains supply. The incumbent methods of loss-of-mains protection were designed when the installed capacity of embedded generation was low, and known problems with nuisance tripping of the devices were considered acceptable because of the insignificant consequence to system operation. With the dramatic increase in the installed capacity of embedded generation over the last decade, the limitations of current islanding detection methods are no longer acceptable. This study describes a new method of loss-of-mains protection based on phasor measurement unit (PMU) technology, specifically using a low cost PMU device of the authors' design which has been developed for distribution network applications. The proposed method addresses the limitations of the incumbent methods, providing a solution that is free of nuisance tripping and has a zero non-detection zone. This system has been tested experimentally and is shown to be practical, feasible and effective. Threshold settings for the new method are recommended based on data acquired from both the Great Britain and Ireland power systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Renewable energy is high on international and national agendas. Currently, grid-connected photovoltaic (PV) systems are a popular technology to convert solar energy into electricity. Existing PV panels have a relatively low and varying output voltage so that the converter installed between the PVs and the grid should be equipped with high step-up and versatile control capabilities. In addition, the output current of PV systems is rich in harmonics which affect the power quality of the grid. In this paper, a new multi-stage hysteresis control of a step-up DC-DC converter is proposed for integrating PVs into a single-phase power grid. The proposed circuitry and control method is experimentally validated by testing on a 600W prototype converter. The developed technology has significant economic implications and could be applied to many distributed generation (DG) systems, especially for the developing countries which have a large number of small PVs connected to their single-phase distribution network

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, a wide variety of centralised and decentralised algorithms have been proposed for residential charging of electric vehicles (EVs). In this paper, we present a mathematical framework which casts the EV charging scenarios addressed by these algorithms as optimisation problems having either temporal or instantaneous optimisation objectives with respect to the different actors in the power system. Using this framework and a realistic distribution network simulation testbed, we provide a comparative evaluation of a range of different residential EV charging strategies, highlighting in each case positive and negative characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An optimal day-ahead scheduling method (ODSM) for the integrated urban energy system (IUES) is introduced, which considers the reconfigurable capability of an electric distribution network. The hourly topology of a distribution network, a natural gas network, the energy centers including the combined heat and power (CHP) units, different energy conversion devices and demand responsive loads (DRLs), are optimized to minimize the day-ahead operation cost of the IUES. The hourly reconfigurable capability of the electric distribution network utilizing remotely controlled switches (RCSs) is explored and discussed. The operational constraints from the unbalanced three-phase electric distribution network, the natural gas network, and the energy centers are considered. The interactions between the electric distribution network and the natural gas network take place through conversion of energy among different energy vectors in the energy centers. An energy conversion analysis model for the energy center was developed based on the energy hub model. A hybrid optimization method based on genetic algorithm (GA) and a nonlinear interior point method (IPM) is utilized to solve the ODSM model. Numerical studies demonstrate that the proposed ODSM is able to provide the IUES with an effective and economical day-ahead scheduling scheme and reduce the operational cost of the IUES.