361 resultados para Coronary syndrome
Resumo:
Aims: To measure levels of intermedin and calcitonin gene-related peptide (CGRP) in acute coronary syndrome (ACS) and to determine if they are elevated.
Methods and results: 81 patients admitted with suspected ACS were enrolled into the study. 50 were confirmed ACS by ACC (2000) guidelines and 31 were in a control group as non-cardiac chest pain. Intermedin was nonsignificantly elevated 6.14 pg/ml vs 4.84 pg/ml b8 h in the ACS group; sensitivity 68%, specificity 63% on presenting sample. Intermedinwas significantly elevated in those patientswho had an initially negative troponin T (b0.03 ng/ml) on presentation, 6.67 pg/ml vs 4.84 pg/ml, p = 0.03. CGRP was significantly elevated in ACS patients, 8–b16 h after pain onset, 8.67 pg/ml vs 7.08 pg/ml, p= 0.036. However, it didn't aid diagnosis in initially negative troponin patients; sensitivity 61%, specificity 60% on presenting sample. Both intermedin and CGRP were elevated in STEMI patients on a first sample, but only intermedin was significantly elevated; 7.03 pg/ml vs 4.84 pg/ml, p =0.02 and 8.87 pg/ml vs 7.03 pg/ml p = 0.093, respectively. High sensitivity troponin T was significant elevated in the ACS group at b8 h (414.9 vs 17.22, p= 0.006) and at 8–b16 h (3325.27 vs 21.54, p = 0.02).
Conclusions: Both intermedin and CGRP are detectable in human patients. Levels showa trend to elevation in ACS, with CGRP being significantly raised N8 h after pain onset. The degree of elevation will have limited clinical applicability.
Resumo:
We have previously reported that loss-of-function mutations in the cathepsin C gene (CTSC) result in Papillon Lefevre syndrome, an autosomal recessive condition characterized by palmoplantar keratosis and early,onset, severe periodontitis. Others have also reported CTSC mutations in patients with severe prepubertal periodontitis, but without any skin manifestations. The possible role of CTSC variants in more common types of non-mendelian, early-onset, severe periodontitis ("aggressive periodontitis") has not been investigated. In this study, we have investigated the role of CTSC in all three conditions. We demonstrate that PLS is genetically homogeneous and the mutation spectrum that includes three novel mutations (c.386T>A/p. V129E, c.935A>G/p.Q312R, and c.1235A>G/p.Y412C) in 21 PLS families (including eight from our previous study) provides an insight into structure-function relationships of CTSC. Our data also suggest that a complete loss-of-function appears to be necessary for the manifestation of the phenotype, making it unlikely that weak CTSC mutations are a cause of aggressive periodontitis. This was confirmed by analyses of the CTSC activity in 30 subjects with aggressive periodontitis and age-sex matched controls, which demonstrated that there was no significant difference between these two groups (1,728.7 +/- SD 576.8 mu moles/mg/min vs. 1,678.7 +/- SD 527.2 mu moles/mg/min, respectively, p = 0.73). CTSC mutations were detected in only one of two families with prepubertal periodontitis; these did not form a separate functional class with respect to those observed in classical PLS. The affected individuals in the other prepubertal periodontitis family not only lacked CTSC mutations, but in addition did not share the haplotypes at the CTSC locus. These data suggest that prepubertal periodontitis is a genetically heterogeneous disease that, in some families, just represents a partially penetrant PLS. (C) 2004 Wiley-Liss, Inc.