38 resultados para Coproducts in frames
Resumo:
This paper presents the findings of a project part sponsored by an ICE Research and Development grant on portal frames in fire. The research reported here has also lead to a sucessful research grant from the IStructE. The paper describes a non-linear elasto plastic dynamic finite element model that captures the collapse of a portal frame in fire. It demonstrates that current guidance on the column base stiffness and strength, to prevent collapse, may in some cases be unconservative.
Resumo:
A full-scale, non-uniform natural fire test on a cold-formed steel portal frame building is described. The results of the test are used to validate a non-linear, elasto-plastic, finite element shell idealisation, for the purposes of later forming the basis of a performance-based design approach for cold-formed steel portal frames at elevated temperatures.
Resumo:
The influence of masonry infills on the in-plane behaviour of RC framed structures is a central topic in the seismic evaluation and retrofitting of existing buildings. Many models in the literature use an equivalent strut member in order to represent the infill but, among the parameters influencing the equivalent strut behaviour, the effect of vertical loads acting on the frames is recognized but not quantified. Nevertheless a vertical load causes a non-negligible variation in the in-plane behaviour of infilled frames by influencing the effective volume of the infill. This results in a change in the stiffness and strength of the system. This paper presents an equivalent diagonal pin-jointed strut model taking into account the stiffening effect of vertical loads on the infill in the initial state. The in-plane stiffness of a range of infilled frames was evaluated using a finite element model of the frame-infill system and the cross-section of the strut equivalent to the infill was obtained for different levels of vertical loading by imposing the equivalence between the frame containing the infill and the frame containing the diagonal strut. In this way a law for identifying the equivalent strut width depending on the geometrical and mechanical characteristics of the infilled frame was generalized to consider the influence of vertical loads for use in the practical applications. The strategy presented, limited to the initial stiffness of infilled frames, is preparatory to the definition of complete non-linear cyclic laws for the equivalent strut.
Resumo:
This paper presents the results of a full-scale site fire test performed on a cold-formed steel portal frame building with semi-rigid joints. The purpose of the study is to establish a performance-based approach for the design of such structures in fire boundary conditions. In the full-scale site fire test, the building collapsed asymmetrically at a temperature of 714°C. A non-linear elasto-plastic finite-element shell model is described and is validated against the results of the full-scale test. A parametric study is presented that highlights the importance of in-plane restraint from the side rails in preventing an outwards sway failure for both a single portal and full building geometry model. The study also demonstrates that the semi-rigidity of the joints should be taken into account in the design. The single portal and full building geometry models display a close match to site test results with failure at 682°C and 704°C, respectively. A design case is described in accordance with Steel Construction Institute design recommendations. The validated single portal model is tested with pinned bases, columns protected, realistic loading and rafters subject to symmetric uniform heating in accordance with the ISO 834 standard fire curve; failure occurs at 703°C.
Resumo:
The mechanisms underlying the parsing of a spatial distribution of velocity vectors into two adjacent (spatially segregated) or overlapping (transparent) motion surfaces were examined using random dot kinematograms. Parsing might occur using either of two principles. Surfaces might be defined on the basis of similarity of motion vectors and then sharp perceptual boundaries drawn between different surfaces (continuity-based segmentation). Alternatively, detection of a high gradient of direction or speed separating the motion surfaces might drive the process (discontinuity-based segmentation). To establish which method is used, we examined the effect of blurring the motion direction gradient. In the case of a sharp direction gradient, each dot had one of two directions differing by 135°. With a shallow gradient, most dots had one of two directions but the directions of the remainder spanned the range between one motion-defined surface and the other. In the spatial segregation case the gradient defined a central boundary separating two regions. In the transparent version the dots were randomly positioned. In both cases all dots moved with the same speed and existed for only two frames before being randomly replaced. The ability of observers to parse the motion distribution was measured in terms of their ability to discriminate the direction of one of the two surfaces. Performance was hardly affected by spreading the gradient over at least 25% of the dots (corresponding to a 1° strip in the segregation case). We conclude that detection of sharp velocity gradients is not necessary for distinguishing different motion surfaces.
Resumo:
The Australasian anuran amphibian genus Litoria, contains many phenotypically-diverse species as a result of radial evolution of an ancestral species into different biotopes much in the manner of the indigenous marsupial mammals. In common with members of the Central/South American genus Phyllomedusa, their specialized skin granular glands are factories for the production of a plethora of biologically-active peptides. Here we report a more detailed study of those present in the defensive skin secretion of the Australasian giant white-lipped tree frog, Litoria infrafrenata, and, for the first time, we have identified three novel frenatins by deduction of primary structures from cDNAs that were cloned from a library constructed from lyophilized skin secretion using a recently-developed technique. All open-reading frames consisted of a putative signal peptide and an acidic pro-region followed by a single copy of a frenatin peptide. Processed peptides corresponding in molecular mass to the deduced molecular masses of frenatins (named 1.1, 3, 3.1 and 4.1) were identified in the same secretion sample using HPLC and mass spectroscopy. The application of this technique thus permits parallel peptidomic and transcriptomic analyzes on the same lyophilized skin secretion sample circumventing sacrifice of specimens from endangered herpetofauna.
Resumo:
In the IEEE 802.11 MAC layer protocol, there are different trade-off points between the number of nodes competing for the medium and the network capacity provided to them. There is also a trade-off between the wireless channel condition during the transmission period and the energy consumption of the nodes. Current approaches at modeling energy consumption in 802.11 based networks do not consider the influence of the channel condition on all types of frames (control and data) in the WLAN. Nor do they consider the effect on the different MAC and PHY schemes that can occur in 802.11 networks. In this paper, we investigate energy consumption corresponding to the number of competing nodes in IEEE 802.11's MAC and PHY layers in error-prone wireless channel conditions, and present a new energy consumption model. Analysis of the power consumed by each type of MAC and PHY over different bit error rates shows that the parameters in these layers play a critical role in determining the overall energy consumption of the ad-hoc network. The goal of this research is not only to compare the energy consumption using exact formulae in saturated IEEE 802.11-based DCF networks under varying numbers of competing nodes, but also, as the results show, to demonstrate that channel errors have a significant impact on the energy consumption.
Resumo:
A new configurable architecture is presented that offers multiple levels of video playback by accommodating variable levels of network utilization and bandwidth. By utilizing scalable MPEG-4 encoding at the network edge and using specific video delivery protocols, media streaming components are merged to fully optimize video playback for IPv6 networks, thus improving QoS. This is achieved by introducing “programmable network functionality” (PNF) which splits layered video transmission and distributes it evenly over available bandwidth, reducing packet loss and delay caused by out-of-profile DiffServ classes. An FPGA design is given which gives improved performance, e.g. link utilization, end-to-end delay, and that during congestion, improves on-time delivery of video frames by up to 80% when compared to current “static” DiffServ.
Resumo:
In this paper, a hierarchical video structure summarization approach using Laplacian Eigenmap is proposed, where a small set of reference frames is selected from the video sequence to form a reference subspace to measure the dissimilarity between two arbitrary frames. In the proposed summarization scheme, the shot-level key frames are first detected from the continuity of inter-frame dissimilarity, and the sub-shot level and scene level representative frames are then summarized by using K-mean clustering. The experiment is carried on both test videos and movies, and the results show that in comparison with a similar approach using latent semantic analysis, the proposed approach using Laplacian Eigenmap can achieve a better recall rate in keyframe detection, and gives an efficient hierarchical summarization at sub shot, shot and scene levels subsequently.
Resumo:
Listeners experience electroacoustic music as full of significance and meaning, and they experience spatiality as one of the factors contributing to its meaningfulness. If we want to understand spatiality in electroacoustic music, we must understand how the listener’s mental processes give rise to the experience of meaning. In electroacoustic music as in everyday life, these mental processes unite the peripheral auditory system with human spatial cognition. In the discussion that follows we consider a range of the listener’s mental processes relating space and meaning from the perceptual attributes of spatial imagery to the spatial reference frames for places and navigation. When considering multichannel loudspeaker systems in particular, an important part of the discussion is focused on the distinctive and idiomatic ways in which this particular mode of sound production contributes to and situates meaning. These idiosyncrasies include the phenomenon of image dispersion, the important consequences of the precedence effect and the influence of source characteristics on spatial imagery. These are discussed in close relation to the practicalities of artistic practice and to the potential for artistic meaning experienced by the listener.