241 resultados para Contaminated


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the bacterial population of soil surface samples from a creosote-contaminated site showed that up to 50% of the culturable micro-organisms detected were able to utilise a mixture of cresols. From fifty different microbial isolates fourteen that could utilise more than one cresol isomer were selected and identified by 16S rRNA analysis. Eight isolates were Rhodococcus strains and six were Pseudomonas strains. In general, the Rhodococcus strains exhibited a broader growth substrate range than the Pseudomonas strains. The distribution of various extradiol dioxygenase (edo) genes, previously associated with aromatic compound degradation in rhodococci, was determined for the Rhodococcus strains by PCR detection and Southern-blot hybridization. One strain, Rhodococcus sp. I1 exhibited the broadest growth substrate range and possessed five different edo genes. Gene disruption experiments indicated that two genes (edoC and edoD) were associated with isopropylbenzene and naphthalene catabolism respectively. The other Rhodococcus strains also possessed some of the edo genes and one (edoB) was present in all of the Rhodococcus strains analysed. None of the rhodococcal edo genes analysed were present in the Pseudomonas strains isolated from the site. It was concluded that individual strains of Rhodococcus possess a wide degradative ability and may be very important in the degradation of complex mixtures of substrates found in creosote.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing groundwaters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex™ 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g-1 before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 mL of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L-1 uranium, the uranium concentrations ranged from 0.95 mg L-1 at 1-h equilibrium to 0.08 mg L-1 at 24-h equilibrium for Diphonix and 0.17 mg L-1 at 1-h equilibrium to 0.03 mg L-1 at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100 mL of acidic-(pH 5)-high-nitrate-containing groundwater (~5 mg L-1 uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kenetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs..