3 resultados para Conjugation
Resumo:
It is shown that the direction-of-arrival (DoA) information carried by an incident electromagnetic (EM) wave can be encoded into the evanescent near field of an electrically small resonance antenna array with a spatial rate higher than that of the incident field oscillation rate in free space. Phase conjugation of the received signal leads to the retrodirection of the near field in the antenna array environment, which in turn generates a retrodirected far-field beam toward the original DoA. This EM phenomenon enables electrically small retrodirective antenna arrays with superdirective, angular super-resolution, auto-pointing properties for an arbitrary DoA. A theoretical explanation of the phenomenon based on first principal observations is given and full-wave simulations demonstrate a realizability route for the proposed retrodirective terminal that is comprised of resonance dipole antenna elements. Specifically, it is shown that a three-element disk-loaded retrodirective dipole array with 0.15\lambda spacings can achieve a 3.4-dBi maximal gain, 3-dBi front-to-back ratio, and 13% return loss fractional bandwidth (at the 10-dB level). Then, it is demonstrated that the radiation gain of a three-element array can be improved to approximately 6 dBi at the expense of the return loss fractional bandwidth reduction (2%).
Resumo:
Cysteine cathepsins, such as cathepsin S (CTSS), are implicated in the pathology of a wide range of diseases and are of potential utility as diagnostic and prognostic biomarkers. In previous work, we demonstrated the potency and efficiency of a biotinylated diazomethylketone (DMK)-based activity-based probe (ABP), biotin-PEG-LVG-DMK, for disclosure of recombinant CTSS and CTSS in cell lysates. However, the limited cell permeability of both the biotin and spacer groups restricted detection of CTSS to cell lysates. The synthesis and characterisation of a cell permeable ABP to report on intracellular CTSS activity is reported. The ABP, Z-PraVG-DMK, a modified peptidyl diazomethylketone, was based on the N-terminus of human cystatin motif (Leu-Val-Gly). The leucine residue was substituted for the alkyne-bearing proparcylglycine to facilitate conjugation of an azide-tagged reporter group using click chemistry, following irreversible inhibition of CTSS. When incubated with viable Human Embryonic Kidney 293 cells, Z-PraVG-DMK permitted disclosure of CTSS activity following cell lysis and rhodamine azide conjugation, by employing standard click chemistry protocols. Furthermore, the fluorescent tag facilitated direct detection of CTSS using in-gel fluorescent scanning, obviating the necessity for downstream biotin-streptavidin conjugation and detection procedures.
Resumo:
We present a reformulation of the hairy-probe method for introducing electronic open boundaries that is appropriate for steady-state calculations involving nonorthogonal atomic basis sets. As a check on the correctness of the method we investigate a perfect atomic wire of Cu atoms and a perfect nonorthogonal chain of H atoms. For both atom chains we find that the conductance has a value of exactly one quantum unit and that this is rather insensitive to the strength of coupling of the probes to the system, provided values of the coupling are of the same order as the mean interlevel spacing of the system without probes. For the Cu atom chain we find in addition that away from the regions with probes attached, the potential in the wire is uniform, while within them it follows a predicted exponential variation with position. We then apply the method to an initial investigation of the suitability of graphene as a contact material for molecular electronics. We perform calculations on a carbon nanoribbon to determine the correct coupling strength of the probes to the graphene and obtain a conductance of about two quantum units corresponding to two bands crossing the Fermi surface. We then compute the current through a benzene molecule attached to two graphene contacts and find only a very weak current because of the disruption of the π conjugation by the covalent bond between the benzene and the graphene. In all cases we find that very strong or weak probe couplings suppress the current.