91 resultados para Closed Convex Sets
Resumo:
Credal networks relax the precise probability requirement of Bayesian networks, enabling a richer representation of uncertainty in the form of closed convex sets of probability measures. The increase in expressiveness comes at the expense of higher computational costs. In this paper, we present a new variable elimination algorithm for exactly computing posterior inferences in extensively specified credal networks, which is empirically shown to outperform a state-of-the-art algorithm. The algorithm is then turned into a provably good approximation scheme, that is, a procedure that for any input is guaranteed to return a solution not worse than the optimum by a given factor. Remarkably, we show that when the networks have bounded treewidth and bounded number of states per variable the approximation algorithm runs in time polynomial in the input size and in the inverse of the error factor, thus being the first known fully polynomial-time approximation scheme for inference in credal networks.
Resumo:
We prove a continuity result for the map sending a masa-bimodule to its support. We characterise the convergence of a net of weakly closed convex hulls of bilattices in terms of the convergence of the corresponding supports, and establish a lower-semicontinuity result for the map sending a support to the corresponding masa-bimodule.
Resumo:
An important issue in risk analysis is the distinction between epistemic and aleatory uncertainties. In this paper, the use of distinct representation formats for aleatory and epistemic uncertainties is advocated, the latter being modelled by sets of possible values. Modern uncertainty theories based on convex sets of probabilities are known to be instrumental for hybrid representations where aleatory and epistemic components of uncertainty remain distinct. Simple uncertainty representation techniques based on fuzzy intervals and p-boxes are used in practice. This paper outlines a risk analysis methodology from elicitation of knowledge about parameters to decision. It proposes an elicitation methodology where the chosen representation format depends on the nature and the amount of available information. Uncertainty propagation methods then blend Monte Carlo simulation and interval analysis techniques. Nevertheless, results provided by these techniques, often in terms of probability intervals, may be too complex to interpret for a decision-maker and we, therefore, propose to compute a unique indicator of the likelihood of risk, called confidence index. It explicitly accounts for the decisionmaker’s attitude in the face of ambiguity. This step takes place at the end of the risk analysis process, when no further collection of evidence is possible that might reduce the ambiguity due to epistemic uncertainty. This last feature stands in contrast with the Bayesian methodology, where epistemic uncertainties on input parameters are modelled by single subjective probabilities at the beginning of the risk analysis process.
Resumo:
We propose and advocate basic principles for the fusion of incomplete or uncertain information items, that should apply regardless of the formalism adopted for representing pieces of information coming from several sources. This formalism can be based on sets, logic, partial orders, possibility theory, belief functions or imprecise probabilities. We propose a general notion of information item representing incomplete or uncertain information about the values of an entity of interest. It is supposed to rank such values in terms of relative plausibility, and explicitly point out impossible values. Basic issues affecting the results of the fusion process, such as relative information content and consistency of information items, as well as their mutual consistency, are discussed. For each representation setting, we present fusion rules that obey our principles, and compare them to postulates specific to the representation proposed in the past. In the crudest (Boolean) representation setting (using a set of possible values), we show that the understanding of the set in terms of most plausible values, or in terms of non-impossible ones matters for choosing a relevant fusion rule. Especially, in the latter case our principles justify the method of maximal consistent subsets, while the former is related to the fusion of logical bases. Then we consider several formal settings for incomplete or uncertain information items, where our postulates are instantiated: plausibility orderings, qualitative and quantitative possibility distributions, belief functions and convex sets of probabilities. The aim of this paper is to provide a unified picture of fusion rules across various uncertainty representation settings.
Resumo:
According to the Mickael's selection theorem any surjective continuous linear operator from one Fr\'echet space onto another has a continuous (not necessarily linear) right inverse. Using this theorem Herzog and Lemmert proved that if $E$ is a Fr\'echet space and $T:E\to E$ is a continuous linear operator such that the Cauchy problem $\dot x=Tx$, $x(0)=x_0$ is solvable in $[0,1]$ for any $x_0\in E$, then for any $f\in C([0,1],E)$, there exists a continuos map $S:[0,1]\times E\to E$, $(t,x)\mapsto S_tx$ such that for any $x_0\in E$, the function $x(t)=S_tx_0$ is a solution of the Cauchy problem $\dot x(t)=Tx(t)+f(t)$, $x(0)=x_0$ (they call $S$ a fundamental system of solutions of the equation $\dot x=Tx+f$). We prove the same theorem, replacing "continuous" by "sequentially continuous" for locally convex spaces from a class which contains strict inductive limits of Fr\'echet spaces and strong duals of Fr\'echet--Schwarz spaces and is closed with respect to finite products and sequentially closed subspaces. The key-point of the proof is an extension of the theorem on existence of a sequentially continuous right inverse of any surjective sequentially continuous linear operator to some class of non-metrizable locally convex spaces.
Resumo:
We construct a bounded linear operator on a separable, reflexive and strictly convex Banach space whose resolvent norm is constant in a neighbourhood of zero.
Resumo:
We undertake a detailed study of the sets of multiplicity in a second countable locally compact group G and their operator versions. We establish a symbolic calculus for normal completely bounded maps from the space B(L-2(G)) of bounded linear operators on L-2 (G) into the von Neumann algebra VN(G) of G and use it to show that a closed subset E subset of G is a set of multiplicity if and only if the set E* = {(s,t) is an element of G x G : ts(-1) is an element of E} is a set of operator multiplicity. Analogous results are established for M-1-sets and M-0-sets. We show that the property of being a set of multiplicity is preserved under various operations, including taking direct products, and establish an Inverse Image Theorem for such sets. We characterise the sets of finite width that are also sets of operator multiplicity, and show that every compact operator supported on a set of finite width can be approximated by sums of rank one operators supported on the same set. We show that, if G satisfies a mild approximation condition, pointwise multiplication by a given measurable function psi : G -> C defines a closable multiplier on the reduced C*-algebra G(r)*(G) of G if and only if Schur multiplication by the function N(psi): G x G -> C, given by N(psi)(s, t) = psi(ts(-1)), is a closable operator when viewed as a densely defined linear map on the space of compact operators on L-2(G). Similar results are obtained for multipliers on VN(C).
Resumo:
We initiate the study of sets of p-multiplicity in locally compact groups and their operator versions. We show that a closed subset E of a second countable locally compact group G is a set of p-multiplicity if and only if E∗={(s,t):ts−1∈E} is a set of operator p-multiplicity. We exhibit examples of sets of p-multiplicity, establish preservation properties for unions and direct products, and prove a p-version of the Stone–von Neumann Theorem.
Resumo:
Some reasons for registering trials might be considered as self-serving, such as satisfying the requirements of a journal in which the researchers wish to publish their eventual findings or publicising the trial to boost recruitment. Registry entries also help others, including systematic reviewers, to know about ongoing or unpublished studies and contribute to reducing research waste by making it clear what studies are ongoing. Other sources of research waste include inconsistency in outcome measurement across trials in the same area, missing data on important outcomes from some trials, and selective reporting of outcomes. One way to reduce this waste is through the use of core outcome sets: standardised sets of outcomes for research in specific areas of health and social care. These do not restrict the outcomes that will be measured, but provide the minimum to include if a trial is to be of the most use to potential users. We propose that trial registries, such as ISRCTN, encourage researchers to note their use of a core outcome set in their entry. This will help people searching for trials and those worried about selective reporting in closed trials. Trial registries can facilitate these efforts to make new trials as useful as possible and reduce waste. The outcomes section in the entry could prompt the researcher to consider using a core outcome set and facilitate the specification of that core outcome set and its component outcomes through linking to the original core outcome set. In doing this, registries will contribute to the global effort to ensure that trials answer important uncertainties, can be brought together in systematic reviews, and better serve their ultimate aim of improving health and well-being through improving health and social care.