36 resultados para Clique vertex irreducible graphs
Resumo:
In this paper we define the structural information content of graphs as their corresponding graph entropy. This definition is based on local vertex functionals obtained by calculating-spheres via the algorithm of Dijkstra. We prove that the graph entropy and, hence, the local vertex functionals can be computed with polynomial time complexity enabling the application of our measure for large graphs. In this paper we present numerical results for the graph entropy of chemical graphs and discuss resulting properties. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we present AGWAN (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the AGWAN model to real-world graphs and for generating random graphs from the model. Using the Enron “who communicates with whom” social graph, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to the structure of real-world graphs.
Resumo:
Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we presentAgwan (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the Agwanmodel to real-world graphs and for generating random graphs from the model. Using real-world directed and undirected graphs as input, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to graph structure.
Resumo:
Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs) with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI) approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs). Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.
Resumo:
We are discussing certain combinatorial and counting problems related to quadratic algebras. First we give examples which confirm the Anick conjecture on the minimal Hilbert series for algebras given by $n$ generators and $\frac {n(n-1)}{2}$ relations for $n \leq 7$. Then we investigate combinatorial structure of colored graph associated to relations of RIT algebra. Precise descriptions of graphs (maps) corresponding to algebras with maximal Hilbert series are given in certain cases. As a consequence it turns out, for example, that RIT algebra may have a maximal Hilbert series only if components of the graph associated to each color are pairwise 2-isomorphic.
Resumo:
A ranking method assigns to every weighted directed graph a (weak) ordering of the nodes. In this paper we axiomatize the ranking method that ranks the nodes according to their outflow using four independent axioms. Besides the well-known axioms of anonymity and positive responsiveness we introduce outflow monotonicity – meaning that in pairwise comparison between two nodes, a node is not doing worse in case its own outflow does not decrease and the other node’s outflow does not increase – and order preservation – meaning that adding two weighted digraphs such that the pairwise ranking between two nodes is the same in both weighted digraphs, then this is also their pairwise ranking in the ‘sum’ weighted digraph. The outflow ranking method generalizes the ranking by outdegree for directed graphs, and therefore also generalizes the ranking by Copeland score for tournaments.
Resumo:
The new ammonium iodomercurates(II), (NH4)(7)[HgI4](2)[Hg2I7](H2O) (1) and (NH4)(3)[Hg2I7] (2) contain isolated tetrahedra and vertex-sharing double tetrahedra as the anions. The crystal structures were determined from single-crystal X-ray diffraction data: 1: orthorhombic, Pnma (no. 62), a = 2175.9(2), b = 1781.8(2), c = 1256.2(2) pm, Z = 4. R-1 [I-0 > 2 sigma(I-0)] = 0.0520; 2: monoclinic, P2(1)/c (no. 14), a = 1259.0(2), b = 773.2(1), c = 2172.4(3) pm, beta = 101.18(2)degrees, Z = 4, R, [I-0 > 2 sigma(I-0)] = 0.0308.
Resumo:
Hardware synthesis from dataflow graphs of signal processing systems is a growing research area as focus shifts to high level design methodologies. For data intensive systems, dataflow based synthesis can lead to an inefficient usage of memory due to the restrictive nature of synchronous dataflow and its inability to easily model data reuse. This paper explores how dataflow graph changes can be used to drive both the on-chip and off-chip memory organisation and how these memory architectures can be mapped to a hardware implementation. By exploiting the data reuse inherent to many image processing algorithms and by creating memory hierarchies, off-chip memory bandwidth can be reduced by a factor of a thousand from the original dataflow graph level specification of a motion estimation algorithm, with a minimal increase in memory size. This analysis is verified using results gathered from implementation of the motion estimation algorithm on a Xilinx Virtex-4 FPGA, where the delay between the memories and processing elements drops from 14.2 ns down to 1.878 ns through the refinement of the memory architecture. Care must be taken when modeling these algorithms however, as inefficiencies in these models can be easily translated into overuse of hardware resources.
Resumo:
We present and analyze an algorithm to measure the structural similarity of generalized trees, a new graph class which includes rooted trees. For this, we represent structural properties of graphs as strings and define the similarity of two Graphs as optimal alignments of the corresponding property stings. We prove that the obtained graph similarity measures are so called Backward similarity measures. From this we find that the time complexity of our algorithm is polynomial and, hence, significantly better than the time complexity of classical graph similarity methods based on isomorphic relations. (c) 2006 Elsevier Inc. All rights reserved.