65 resultados para Central composite design
Resumo:
Response surface methodology was used to develop models to predict the effect of tomato cultivar, juice pH, blanching temperature and time on colour change of tomato juice after blanching. The juice from three tomato cultivars with adjusted pH levels ranging from 3.9 to 4.6 were blanched at temperatures from 60-100 °C for 1-5 min using the central composite design (CCD). The colour change was assessed by calculating the redness (a/b) and total colour change (∆E) after measuring the Hunter L, a and b values. Developed models for both redness and ∆E were significant (p<0.0001) with satisfactory coefficient of determination (R2 = 0.99 and 0.97) and low coefficient of variation (CV% = 1.89 and 7.23), respectively. Multilevel validation that was implemented revealed that the variation between the predicted and experimental values obtained for redness and ∆E were within the acceptable error range of 7.3 and 22.4%, respectively
Resumo:
The effect of superficial air velocity on lovastatin production by Aspergillus terreus PL10 using wheat bran and wheat straw was investigated in a 7 l and a 1200 l packed bed reactor. Mass transfer and reaction limitations on bioconversion in the 1200 l reactor was studied based on a central composite design of experiments constructed using the superficial air velocity and solid substrate composition as variables and lovastatin production as response.
The surface response prediction showed a maximum lovastatin production of 1.86 mg g-1 dry substrate on day 5 of the bioconversion process when the reactor was operated using 0.19 vvm airflow rate (23.37 cm min-1 superficial air velocity) and 54% substrate composition (wC). Lovastatin production did not increase significantly with superficial air velocity in the 7 l reactor. Variation in temperature and exit CO2 composition was recorded, and the Damköhler number was calculated for lovastatin production at these two scales. The results showed that in larger reactors mass transfer limitation controlled bioconversion while in smaller reactors bioconversion was controlled by reaction rate limitations. In addition, mass transfer limitations in larger reactors reduced the rate of metabolic heat removal, resulting in hot spots within the substrate bed.
Resumo:
The combination of metformin hydrochloride (MTF) and glipizide (GLZ) is second-line medication for diabetes mellitus type 2 (DMT2). In the present study, elementary osmotic pump(EOP)tablet is designed to deliver the combination of MTF and GLZ in a sustained and synchronized manner. By analyzing different variables of the formulation, sodium hydrogen carbonate is introduced as pH modifier to improve the release of GLZ, while ethyl cellulose acts as release retardant to reduce the burst release phase of MTF. A two factor, three level face-centered central composite design (FCCD) is applied to investigate the impact of different factors on drug release profile. Compared with conventional tablets, the elementary osmotic pump (EOP) tablet demonstrates a controlled release behavior with relative bioavailability of 99.2% for MTF and 99.3% for GLZ. Data also shows EOP tablet is able to release MTF and GLZ in a synchronized and sustained manner both in vitro and in vivo
Resumo:
In this article we propose a technique for dual-band Class-E power amplifier design using composite right/left-handed transmission lines, CRLH TLs. Design equations are presented and design procedures are elaborated. Because of the nonlinear phase dispersion characteristic of CRLH TLs, the single previous attempt at applying this method to dual bond Class-E amplifier design was not sufficient to simultaneously satisfy, the minimum requirement of Class-E impedances at both the fundamental and the second harmonic frequencies. This article rectifies this situation. A design example illustrating the synthesis procedure for a 0.5W-5V dual band Class-E amplifier circuit simultaneously operated at 900 MHz and 2.4 GHz is given and compared with ADS simulation.
Resumo:
There is an increasing need to identify the rheological properties of cement grout using a simple test to determine the fluidity, and other properties of underwater applications such as washout resistance and compressive strength. This paper reviews statistical models developed using a factorial design that was carried out to model the influence of key parameters on properties affecting the performance of underwater cement grout. Such responses of fluidity included minislump and flow time measured by Marsh cone, washout resistance, unit weight, and compressive strength. The models are valid for mixes with 0.35–0.55 water-to-binder ratio (W/B), 0.053–0.141% of antiwashout admixture (AWA), by mass of water, and 0.4–1.8% (dry extract) of superplasticizer (SP), by mass of binder. Two types of underwater grout were tested: the first one made with cement and the second one made with 20% of pulverised fuel ash (PFA) replacement, by mass of binder. Also presented are the derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of underwater cement grout. Such parameters can be useful to reduce the test protocol needed for proportioning of underwater cement grout. This paper attempts also to demonstrate the usefulness of the models to better understand trade-offs between parameters and compare the responses obtained from the various test methods that are highlighted.
Resumo:
The design of composite asymmetric cellular beams is not fully covered by existing guidance but is an area of important practical application. Asymmetry in the shape of the cross-section of cellular beams causes development of additional bending moments in the web-posts between closely placed openings. Furthermore, the development of local composite action influences the distribution of forces in the web-flange Tees. The design method presented in this paper takes account of high degrees of asymmetry in the cross-section and also the influence of elongated or rectangular openings.
Resumo:
A major concern in stiffener run-out regions, where the stiffener is terminated due to a cut-out, intersecting rib, or some other structural feature which interrupts the load path, is the relatively weak skin–stiffener interface in the absence of mechanical fasteners. More damage tolerant stiffener run-outs are clearly required and these are investigated in this paper. Using a parametric finite element analysis, the run-out region was optimised for stable debonding crack growth. The modified run-out, as well as a baseline configuration, were manufactured and tested. Damage initiation and propagation was investigated in detail using state-of-the-art monitoring equipment including Acoustic Emission and Digital Image Correlation. As expected, the baseline configuration failed catastrophically. The modified run-out showed improved crack-growth stability, but subsequent delamination failure in the stiffener promptly led to catastrophic failure.
Resumo:
Damage tolerant hat-stiffened thin-skinned composite panels with and without a centrally located circular cutout, under uniaxial compression loading, were investigated experimentally and analytically. These panels incorporated a highly postbuckling design characterised by two integral stiffeners separated by a large skin bay with a high width to skin-thickness ratio. In both configurations, the skin initially buckled into three half-wavelengths and underwent two mode-shape changes; the first a gradual mode change characterised by a central deformation with double curvature and the second a dynamic snap to five half-wavelengths. The use of standard path-following non-linear finite element analysis did not consistently capture the dynamic mode change and an approximate solution for the prediction of mode-changes using a Marguerre-type Rayleigh-Ritz energy method is presented. Shortcomings with both methods of analysis are discussed and improvements suggested. The panels failed catastrophically and their strength was limited by the local buckling strength of the hat stiffeners. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper reports on a design study assessing the impact of laminate manufacturing constraints on the structural performance and weight of composite stiffened panels. The study demonstrates that maximizing ply continuity results in weight penalties, while various geometric constraints related to manufacture and repair can be accommodated without significant weight penalties, potentially generating robust flexible designs.
Resumo:
Considering the development of aerospace composite components, designing for reduced manufacturing layup cost and structural complexity is increasingly important. While the advantage of composite materials is the ability to tailor designs to various structural loads for minimum mass, the challenge is obtaining a design that is manufacturable and minimizes local ply incompatibility. The focus of the presented research is understanding how the relationships between mass, manufacturability and design complexity, under realistic loads and design requirements, can be affected by enforcing ply continuity in the design process. Presented are a series of sizing case studies on an upper wing cover, designed using conventional analyses and the tabular laminate design process. Introducing skin ply continuity constraints can generate skin designs with minimal ply discontinuities, fewer ply drops and larger ply areas than designs not constrained for continuity. However, the reduced design freedom associated with the addition of these constraints results in a weight penalty over the total wing cover. Perhaps more interestingly, when considering manual hand layup the reduced design complexity is not translated into a reduced recurring manufacturing cost. In contrast, heavier wing cover designs appear to take more time to layup regardless of the laminate design complexity. © 2012 AIAA.