6 resultados para Bottom-up learning


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Safety on public transport is a major concern for the relevant authorities. We
address this issue by proposing an automated surveillance platform which combines data from video, infrared and pressure sensors. Data homogenisation and integration is achieved by a distributed architecture based on communication middleware that resolves interconnection issues, thereby enabling data modelling. A common-sense knowledge base models and encodes knowledge about public-transport platforms and the actions and activities of passengers. Trajectory data from passengers is modelled as a time-series of human activities. Common-sense knowledge and rules are then applied to detect inconsistencies or errors in the data interpretation. Lastly, the rationality that characterises human behaviour is also captured here through a bottom-up Hierarchical Task Network planner that, along with common-sense, corrects misinterpretations to explain passenger behaviour. The system is validated using a simulated bus saloon scenario as a case-study. Eighteen video sequences were recorded with up to six passengers. Four metrics were used to evaluate performance. The system, with an accuracy greater than 90% for each of the four metrics, was found to outperform a rule-base system and a system containing planning alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods \cite{korhonen2exact, nie2014advances} tackle the problem by using $k$-trees to learn the optimal Bayesian network with tree-width up to $k$. Finding the best $k$-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative $k$-trees by introducing an informative score function to characterize the quality of a $k$-tree. To further improve the quality of the $k$-trees, we propose a probabilistic hill climbing approach that locally refines the sampled $k$-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most $k$. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many have called for medical students to learn how to manage complexity in healthcare. This study examines the nuances of students' challenges in coping with a complex simulation learning activity, using concepts from complexity theory, and suggests strategies to help them better understand and manage complexity.Wearing video glasses, participants took part in a simulation ward-based exercise that incorporated characteristics of complexity. Video footage was used to elicit interviews, which were transcribed. Using complexity theory as a theoretical lens, an iterative approach was taken to identify the challenges that participants faced and possible coping strategies using both interview transcripts and video footage.Students' challenges in coping with clinical complexity included being: a) unprepared for 'diving in', b) caught in an escalating system, c) captured by the patient, and d) unable to assert boundaries of acceptable practice.Many characteristics of complexity can be recreated in a ward-based simulation learning activity, affording learners an embodied and immersive experience of these complexity challenges. Possible strategies for managing complexity themes include: a) taking time to size up the system, b) attuning to what emerges, c) reducing complexity, d) boundary practices, and e) working with uncertainty. This study signals pedagogical opportunities for recognizing and dealing with complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Foundation doctors are expected to assess and interpret plain x-ray studies of the chest/abdomen before a definitive report is issued by senior staff. The Royal College of Radiologists have published guidelines (RCR curriculum) on the scope of plain film findings medical students should be familiar with.1 Studies have shown that the x-ray interpretation without feedback does not significantly improve diagnostic ability. 2 Queen’s University, Belfast Trust Radiology and Experior Medical developed an online system to assess individual student ability to interpret X-ray findings. Over a series of assessments each student’s profile is built up, identifying strengths and weakness. The system can then create bespoke individual assessments re-evaluating previously identified weak areas and quantifying interpretative skill improvement. Aim: To determine how readily an online system is adopted by senior medical students, investigating if increasing exposure to x-ray interpretation combined with cyclical formative feedback enhances performance. Methods: The system was offered to all 270 final year medical students as an online resource. The system comprised a series of 20 weekly 30 minute assessments, containing normal and abnormal x-rays within the RCR curriculum. After each assessment students were given formative feedback, including their own result, annotated answers, peer group comparison and a breakdown of areas of strength and weakness. Focus groups of 4-5 students addressed student perspectives of the system, including ease of use, image resolution, system performance across different operating platforms, perceived value of formative feedback loops, breakdown of performance and the value of bespoke personalised assessments. Research Ethics Approval was granted for the study. Data analysis was via two-sided one-sample t-test; initial minimal recruitment was estimated as 60 students, to detect a mean 10% change in performance, with a standard deviation of 20%. Results and Discussion: Over 80% (n = XXX/270) of the student cohort engaged with the study. Student baseline average was 39%, increasing to 62% by the exit test. The steadily sustained improvement (57% relative performance in interpretative diagnostic accuracy) was despite increasing test difficulty. Student feedback via focus groups was universally positive throughout the examined domains. Conclusion: The online resource proved to be valuable, with high levels of student engagement, improving performance despite increasingly difficulty testing and positive learner experience with the system. References: 1. Undergraduate Radiology Curriculum, The Royal College of Ra, April 2012. Ref No. BFCR(12)4 The Royal College of Radiologists, April 2012 2. I Satia, S Bashagha, A Bibi, R Ahmed, S Mellor, F Zaman. Assessing the accuracy and certainty in interpretating chest x-rays in the medical division. Clin Med August 2013 Vol.13 no. 4 349-352