45 resultados para Birds of prey
Resumo:
The bones (humerus and/or femur) of 229 birds of prey from 11 species were analyzed for Pb and As to evaluate their exposure to Pb shot. The species with the highest mean Pb levels were red kite (Milvus milvus) and Eurasian griffon (Gyps fulvus), and the species with the lowest levels were Eurasian buzzard (Buteo buteo) and booted eagle (Hieraaetus pennatus). Red kite also had the highest mean As level, an element present in small amounts in Pb shot. Elevated bone Pb concentrations (>10 microg/g dry weight) were found in 10 birds from six species. Clinical signs compatible with lethal Pb poisoning and/or excessive bone Pb concentrations (>20 microg/g) were observed in one Eurasian eagle-owl (Bubo bubo), one red kite, and one Eurasian griffon. Pb poisoning has been diagnosed in eight upland raptor species in Spain to date.
Resumo:
Birds of prey forage over large areas and so might be expected to accumulate contaminants which are elevated but heterogeneously distributed in the general environment. The aim of this study was to test the hypothesis that arsenic levels in raptors from a region with elevated environmental arsenic concentrations were higher than those in birds from an uncontaminated part of Britain. Arsenic concentrations in the liver, kidney and muscle of kestrels, Falco tinnunculus, sparrowhawks, Accipiter nisus, and barn owls, Tyto alba, from south-west (SW) England, an area with naturally and anthropogenically (through mining) elevated environmental arsenic concentrations, were compared with those in birds from SW Scotland, where no such geochemical anomaly exists. Arsenic residues in kestrels from SW England were approximately three times greater than those in birds from SW Scotland for the three tissue types analysed. This was not the case for the other species in which arsenic residues were similar in birds from both regions. It is suggested that differences between species in both diet and arsenic metabolism could explain why kestrels have elevated arsenic tissue burdens in response to general environmental contamination but sparrowhawks and barn owls do not.
Resumo:
This article examines the travel writings and medical work in India of Lady Hariot Dufferin, Vicereine of India between 1884 and 1888. Lady Dufferin accompanied her husband, the Viceroy Lord Dufferin, through various social and political engagements in India, and carved her own niche in colonial and postcolonial history as a pioneer in the medical training of women in India. The article examines her travel writings on India and explores the nature of her complicity in the Raj, as well as the gendered nature of the separate public role she created for herself in relation to her 'zenana work' in providing medical care for the women of India. The author suggests that, through her work, Lady Dufferin challenges and extends the theoretical paradigms of postcolonialist and feminist critiques of empire.
Resumo:
The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.
Resumo:
The Eurasian otter (Lutra lutra L.) is a top predator in aquatic systems and plays an important role in ecosystem functioning. However, it has undergone dramatic declines throughout Europe as a result of environmental degradation. We examine the putative role of the otter as a bioindicator in Ireland which remains a stronghold for the species and affords a unique opportunity to examine variation in its ecological niche. We describe diet, using spraint contents, along rivers during 2010 and conduct a review and quantitative meta-analysis of the results of a further 21 studies. We aimed to assess variation in otter diet in relation to river productivity, a proxy for natural nutrification and anthropogenic eutrophication, and availability of salmonid prey (Salmo trutta and Salmo salar), to test the hypothesis that otter diet is related to environmental quality. Otter diet did not vary with levels of productivity or availability of salmonids whilst Compositional Analysis suggested there was no selection of salmonid over non-salmonid fish. There was a distinct niche separation between riverine and lacustrine systems, the latter being dominated by Atlantic eel (Anguilla anguilla). Otters are opportunistic and may take insects, freshwater mussels, birds, mammals and even fruit. Otters living along coasts have a greatest niche breath than those in freshwater systems which encompasses a wide variety of intertidal prey though pelagic fish are rarely taken. It is concluded that the ability of the otter to feed on a wide diversity of prey taxa and the strong influence of habitat type, renders it a poor bioindicator of environmental water quality. It seems likely that the plasticity of the habitat and dietary niche of otters, and the extent of suitable habitat, may have sustained populations in Ireland despite intensification of agriculture during the 20th century.
Resumo:
BACKGROUND: Evolution equipped Bdellovibrio bacteriovorus predatory bacteria to invade other bacteria, digesting and replicating, sealed within them thus preventing nutrient-sharing with organisms in the surrounding environment. Bdellovibrio were previously described as "obligate predators" because only by mutations, often in gene bd0108, are 1 in ~1x10(7) of predatory lab strains of Bdellovibrio converted to prey-independent growth. A previous genomic analysis of B. bacteriovorus strain HD100 suggested that predatory consumption of prey DNA by lytic enzymes made Bdellovibrio less likely than other bacteria to acquire DNA by lateral gene transfer (LGT). However the Doolittle and Pan groups predicted, in silico, both ancient and recent lateral gene transfer into the B. bacteriovorus HD100 genome.
RESULTS: To test these predictions, we isolated a predatory bacterium from the River Tiber- a good potential source of LGT as it is rich in diverse bacteria and organic pollutants- by enrichment culturing with E. coli prey cells. The isolate was identified as B. bacteriovorus and named as strain Tiberius. Unusually, this Tiberius strain showed simultaneous prey-independent growth on organic nutrients and predatory growth on live prey. Despite the prey-independent growth, the homolog of bd0108 did not have typical prey-independent-type mutations. The dual growth mode may reflect the high carbon content of the river, and gives B. bacteriovorus Tiberius extended non-predatory contact with the other bacteria present. The HD100 and Tiberius genomes were extensively syntenic despite their different cultured-terrestrial/freshly-isolated aquatic histories; but there were significant differences in gene content indicative of genomic flux and LGT. Gene content comparisons support previously published in silico predictions for LGT in strain HD100 with substantial conservation of genes predicted to have ancient LGT origins but little conservation of AT-rich genes predicted to be recently acquired.
CONCLUSIONS: The natural niche and dual predatory, and prey-independent growth of the B. bacteriovorus Tiberius strain afforded it extensive non-predatory contact with other marine and freshwater bacteria from which LGT is evident in its genome. Thus despite their arsenal of DNA-lytic enzymes; Bdellovibrio are not always predatory in natural niches and their genomes are shaped by acquiring whole genes from other bacteria.
Resumo:
During benthic cultivation Mytilus edulis (blue mussels) are subject to predation pressure from a number of predators including Carcinus maenas (shore crabs). This predator can be responsible for substantial losses of mussels from the fishery and a full understanding of the predator–prey relationship between M. edulis and C. maenas is required to ensure attempts that reduce predatory pressure and subsequent commercial loss are successful. Whilst much work has examined the prey–predator size relationships between C. maenas and M. edulis, far less research has investigated how stress, such as periods of extended aerial exposure, may affect these relationships. We tested whether profit in terms of calories gained by crabs consuming mussels stressed by aerial exposure for 48 h differed from that of mussels at ambient conditions and whether being stressed affected the mussel's likelihood of predation. We also tested whether the size relationship between predators and their prey differed when mussels were stressed. We found that the profitability of prey (calories gained per second of handling time) did not vary between stressed and unstressed mussels. Handling times for stressed and unstressed mussels were similar, even when crabs were presented with mussels of the maximum size that they are able to consume. Small crabs were more likely to reject a mussel of preferred size if it was unstressed, suggesting that crabs may be able to assess that these mussels would require extra effort to break into and consume. Our findings suggest that the predator–prey relationship between mussels and crabs is not altered when mussels are stressed. C. maenas remains a voracious predator and regardless of the condition of mussels laid on commercial beds there is a need to control this predator in attempt to reduce losses in the benthic fishery.
Resumo:
Interspecific interactions are major structuring forces in marine littoral communities; however, it is unclear which of these interactions are exhibited by many key-component species. Gut content analysis showed that the ubiquitous rocky/cobble shore amphipod Echinogammarus marinas, often ascribed as a mesograzer, consumes both algae and macroinvertebrates. Further, laboratory experiments showed that E. marinus is an active predator of such macroinvertebrates, killing and consuming the isopod Jaera nordmanni and the oligochaete Tubificoides benedii. Predatory impacts of E. marinus were not alleviated by the presence of alternative food in the form of alga discs. However, in the presence of prey, consumption of alga by E. marinus was significantly reduced. Further, survival of prey was significantly higher when substrate was provided, but predation remained significant and did not decline with further increases in substrate heterogeneity. We conclude that such amphipods can have pervasive predatory impacts on a range of species, with implications for community structure, diversity and functioning.
Resumo:
To assess the increasing threats to aquatic ecosystems from invasive species, we need to elucidate the mechanisms of impacts of current and predicted future invaders. Dikerogammarus villosus, a Ponto-Caspian amphipod crustacean, is invading throughout Europe and predicted to invade the North American Great Lakes. European field studies show that populations of macroinvertebrates decline after D. villosus invasion. The mechanism of such impacts has not been addressed empirically; however, D. villosus is known to prey upon and replace other amphipods. Therefore, in this study, we used microcosm and mesocosm laboratory experiments, with both single and mixed prey species scenarios, to assess any predatory impact of D. villosus on a range of macro invertebrate taxa, trophic groups, and body sizes. Dikerogammarus villosus predatory behaviour included shredding of prey and infliction of
Resumo:
An attempt to improve the food base for brown trout Salmo trutta in Northern Ireland was made in 1958.59 by deliberately introducing English Gammarus pulex into several Irish rivers. In addition. another amphipod Crangonyx pseudogracilis, was later accidently introduced into II ish waters. Our study represents the first attempt to examine the trophic interactions between a native fish predator (S. trutta) and an array of these native (Gammarus duebeni celticus) and introduced (G. pulex and C. pseudogracilis) amphipods. Feeding experiments, involving young brown trout predators and ampiphod prey, revealed that the fish actively selected C. pseudogracilis relative to two alternative Gammarus prey species. Although the trout encountered the Gammarus species more than C. pseudogracilis, they were eaten less than Crangonyx. Difficulties in handling and ingestion of Gammarus by trout may be a. key component of the preference fbr the smaller, more easily handled Crangonyx. The microdistribution of the species was altered by the fish, due to predation being greater in particular microhabitats, Our study showed that the introduction of the herbivorous C. pseudogracilis into Irish freshwaters may represent a useful addition to fish diets. particularly for small and/or juvenile fish. The reprecussions of the deliberate introduction of G. pulex are less clear. It may improve feeding for fish. but only if it can coexist with indigenous macroinvertebrates and thus ultimately improve the range and quantity of possible food items in predator diets. Alternatively, being highly predatory towards other macroinvertebrates including G. d. celticus and C. pseudogracilis. G. pulex may be deleterious to the diversity of the resident benthic community and hence reduce the diversity of prey available to fish predators.
Resumo:
Lakes in Arctic and subarctic regions display extreme levels of seasonal variation in light, temperature and ice cover. Comparatively little is known regarding the effects of such seasonal variation on the diet and resource use of fish species inhabiting these systems. Variation in the diet of European whitefish Coregonus lavaretus (L.) during periods of ice cover in this region is often regarded as 'common knowledge'; however, this aspect of the species' ecology has not been examined empirically. Here, we outline the differences in invertebrate community structure, fish activity, and resource use of monomorphic whitefish populations between summer (August-September) and winter (February-March) in three subarctic lakes in Finnish Lapland. Benthic macroinvertebrate densities did not exhibit measurable differences between summer and winter. Zooplankton diversity and abundance, and activity levels of all fish species (measured as catch per unit effort) were lower in winter. The summer diet of C. lavaretus was typical of a generalist utilising a variety of prey sources. In winter, its dietary niche was significantly reduced, and the diet was dominated by chironomid larvae in all study sites. Pelagic productivity decreases during winter, and fish species inhabiting these systems are therefore restricted to feeding on benthic prey. Sampling time has strong effect on our understanding of resource utilisation by whitefish in subarctic lakes and should be taken into account in future studies of these systems. © 2012 John Wiley & Sons A/S.
Resumo:
We develop a theory for the food intake of a predator that can switch between multiple prey species. The theory addresses empirical observations of prey switching and is based on the behavioural assumption that a predator tends to continue feeding on prey that are similar to the prey it has consumed last, in terms of, e.g., their morphology, defences, location, habitat choice, or behaviour. From a predator's dietary history and the assumed similarity relationship among prey species, we derive a general closed-form multi-species functional response for describing predators switching between multiple prey species. Our theory includes the Holling type II functional response as a special case and makes consistent predictions when populations of equivalent prey are aggregated or split. An analysis of the derived functional response enables us to highlight the following five main findings. (1) Prey switching leads to an approximate power-law relationship between ratios of prey abundance and prey intake, consistent with experimental data. (2) In agreement with empirical observations, the theory predicts an upper limit of 2 for the exponent of such power laws. (3) Our theory predicts deviations from power-law switching at very low and very high prey-abundance ratios. (4) The theory can predict the diet composition of a predator feeding on multiple prey species from diet observations for predators feeding only on pairs of prey species. (5) Predators foraging on more prey species will show less pronounced prey switching than predators foraging on fewer prey species, thus providing a natural explanation for the known difficulties of observing prey switching in the field. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Studies of competition, predator–prey dynamics and food webs typically consider conspecifics as equal, however, individuals from the same population that are seemingly identical can show considerable variation with regards to a number of processes. Such phenomena may be demonstrated in terms of diet, and the quantities and types of resources that are consumed are commonly considered. The marine amphipod Echinogammarus marinus, a recently demonstrated predator on intertidal rocky shores, has been shown to consume a wide range of food types but it is unknown how this may vary between individuals. Here, we investigated the variation that occurs both among and within individuals of a population of E. marinus with respect to the mean numbers consumed of a common prey item, the isopod Jaera nordmanni. First, by comparing the length of starvation times, used as a proxy for hunger level, individuals maintained without food for up to 24 h consumed significantly less prey during feeding trials than those starved for 48 h and longer. The degree of inter-individual variation within each starvation period was also found to differ, with greater variation among individuals starved for shorter periods of time than those starved for longer time periods. Secondly, we tested whether individual amphipods tracked over time consumed consistently similar numbers of prey or whether they showed intra-individual variation, and if so, to what degree. We found that the numbers of prey consumed per individual could be predicted in the short-term between consecutive feeding trials, however over the long-term this relationship broke down. These results are discussed with respect to potential physiological and behavioural mechanisms, as well as the implications that such variation may have for stability of prey populations in the field.