46 resultados para Biodiversity Surrogates
Resumo:
Potential explanatory variables often co-vary in studies of species richness. Where topography varies within a survey it is difficult to separate area and habitat-diversity effects. Topographically complex surfaces may contain more species due to increased habitat diversity or as a result of increased area per se. Fractal geometry can be used to adjust species richness estimates to control for increases in area on complex surfaces. Application of fractal techniques to a survey of rocky shores demonstrated an unambiguous area-independent effect of topography on species richness in the Isle of Man. In contrast, variation in species richness in south-west England reflected surface availability alone. Multivariate tests and variation in limpet abundances also demonstrated regional variation in the area-independent effects of topography. Community composition did not vary with increasing surface complexity in south-west England. These results suggest large-scale gradients in the effects of heterogeneity on community processes or demography.
Resumo:
This paper presents a new review of our knowledge of the ancient forest beetle fauna from Holocene archaeological and palaeoecological sites in Great Britain and Ireland. It examines the colonisation, dispersal and decline of beetle species, highlighting the scale and nature of human activities in the shaping of the landscape of the British Isles. In particular, the paper discusses effects upon the insect fauna, and examines in detail the fossil record from the Humberhead Levels, eastern England. It discusses the local extirpation of up to 40 species in Britain and 15 species in Ireland. An evaluation of the timing of extirpations is made, suggesting that many species in Britain disappear from the fossil record between c. 3000 cal BC and 1000 cal BC (c. 5000-3000 cal BP), although some taxa may well have survived until considerably later. In Ireland, there are two distinct trends, with a group of species which seem to be absent after c. 2000 cal BC (c. 4000 cal BP) and a further group which survives until at least as late as the medieval period. The final clearance of the Irish landscape over the last few hundred years was so dramatic, however, that some species which are not especially unusual in a British context were decimated. Reasons behind the extirpation of taxa are examined in detail, and include a combination of forest clearance and human activities, isolation of populations, lack of temporal continuity of habitats, edaphic and competition factors affecting distribution of host trees (particularly pine), lack of forest fires and a decline in open forest systems. The role of climate change in extirpations is also evaluated. Consideration is given to the significance of these specialised ancient forest inhabitants in Ireland in the absence of an early Holocene land-bridge which suggests that colonisation was aided by other mechanisms, such as human activities and wood-rafting. Finally, the paper discusses the Continental origins of the British and Irish fauna and its hosts and the role played by European glacial refugia.
Resumo:
The defensive skin secretions of amphibians are a rich source of bioactive peptides. Here we describe a rapid technique for skin granular gland transcriptome cloning from a surrogate tissue-the secretion itself. cDNA libraries were constructed from lyophilized skin secretion from each of the Chinese frogs (Rana schmackeri, Rana versabilis, and Rana plancyi fukienensis) using magnetic oligo(dT) bead-captured polyadenylated mRNA as templates. Specific esculentin cDNAs were amplified by 3'-RACE using a degenerate primer designed for a consensus nucleotide sequence in the 5' untranslated region of previously characterized ranid frog peptide cDNAs. The cloned cDNAs were found to encode the antimicrobial peptides esculentins 1 and 2 from each of the species examined. The presence of predicted peptide structures in skin secretions was confirmed by MALDI-TOF mass spectrometry and automated Edman degradation. This experimental approach can thus rapidly expedite parallel transcriptome and peptidome analysis of amphibian granular gland secretions without harming or sacrificing donor animals.
Resumo:
This paper evaluates how long-term records could and should be utilized in conservation policy and practice. Traditionally, there has been an extremely limited use of long-term ecological records (greater than 50 years) in biodiversity conservation. There are a number of reasons why such records tend to be discounted, including a perception of poor scale of resolution in both time and space, and the lack of accessibility of long temporal records to non-specialists. Probably more important, however, is the perception that even if suitable temporal records are available, their roles are purely descriptive, simply demonstrating what has occurred before in Earth’s history, and are of little use in the actual practice of conservation. This paper asks why this is the case and whether there is a place for the temporal record in conservation management. Key conservation initiatives related to extinctions, identification of regions of greatest diversity/threat, climate change and biological invasions are addressed. Examples of how a temporal record can add information that is of direct practicable applicability to these issues are highlighted. These include (i) the identification of species at the end of their evolutionary lifespan and therefore most at risk from extinction, (ii) the setting of realistic goals and targets for conservation ‘hotspots’, and (iii) the identification of various management tools for the maintenance/restoration of a desired biological state. For climate change conservation strategies, the use of long-term ecological records in testing the predictive power of species envelope models is highlighted, along with the potential of fossil records to examine the impact of sea-level rise. It is also argued that a long-term perspective is essential for the management of biological invasions, not least in determining when an invasive is not an invasive. The paper concludes that often inclusion of a long-term ecological perspective can provide a more scientifically defensible basis for conservation decisions than the one based only on contemporary records. The pivotal issue of this paper is not whether long-term records are of interest to conservation biologists, but how they can actually be utilized in conservation practice and policy.
Resumo:
We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.
Resumo:
Genes, species and ecosystems are often considered to be assets. The need to ensure a sufficient diversity of this asset is being increasingly recognised today. Asset managers in banks and insurance companies face a similar challenge. They are asked to manage the assets of their investors by constructing efficient portfolios. They deliberately make use of a phenomenon observed in the formation of portfolios: returns are additive, while risks diversify. This phenomenon and its implications are at the heart of portfolio theory. Portfolio theory, like few other economic theories, has dramatically transformed the practical work of banks and insurance companies. Before portfolio theory was developed about 50 years ago, asset managers were confronted with a situation similar to the situation the research on biodiversity faces today. While the need for diversification was generally accepted, a concept that linked risk and return on a portfolio level and showed the value of diversification was missing. Portfolio theory has closed this gap. This article first explains the fundamentals of portfolio theory and transfers it to biodiversity. A large part of this article is then dedicated to some of the implications portfolio theory has for the valuation and management of biodiversity. The last section introduces three development openings for further research.
Resumo:
Particulate matter can play a vital role in delivering nutrients and micro organisms to groundwater. This paper uses bacteriophage and microsphere surrogates to study the delivery of particles to the subsurface and demonstrates the potential role that pH and ionic strength can play in limiting particle mobility.
Resumo:
1. Horizon scanning is an essential tool for environmental scientists if they are to contribute to the evidence base for Government, its agencies and other decision makers to devise and implement environmental policies. The implication of not foreseeing issues that are foreseeable is illustrated by the contentious responses to genetically modified herbicide-tolerant crops in the UK, and by challenges surrounding biofuels, foot and mouth disease, avian influenza and climate change.
Resumo:
How do the predicted climatic changes (IPCC, 2007) for the next century compare in magnitude and rate to those that Earth has previously encountered? Are there comparable intervals of rapid rates of temperature change, sea-level rise and levels of atmospheric CO2 that can be used as analogues to assess possible biotic responses to future change? Or are we stepping into the great unknown? This perspective article focuses on intervals in time in the fossil record when atmospheric CO2 concentrations increased up to 1200 ppmv, temperatures in mid- to high-latitudes increased by greater than 4 ?C within 60 years, and sea levels rose by up to 3 m higher than present. For these intervals in time, case studies of past biotic responses are presented to demonstrate the scale and impact of the magnitude and rate of such climate changes on biodiversity. We argue that although the underlying mechanisms responsible for these past changes in climate were very different (i.e. natural processes rather than anthropogenic), the rates and magnitude of climate change are similar to those predicted for the future and therefore potentially relevant to understanding future biotic response. What emerges from these past records is evidence for rapid community turnover, migrations, development of novel ecosystems and thresholds from one stable ecosystem state to another, but there is very little evidence for broad-scale extinctions due to a warming world. Based on this evidence from the fossil record, we make four recommendations for future climate-change integrated conservation strategies.
Resumo:
Given currently high rates of extinction, it is critical to be able to predict how ecosystems will respond to loss of species and consequent changes in community structure. Much previous research in this area has been based on terrestrial systems, using synthetically assembled communities. There has beer! much less research on inter-trophic effects in different systems, using in situ removal experiments. Problems with the design of early experiments have made it difficult to determine whether reductions in ecosystem functioning in low diversity treatments were due to the number of species present or merely to the reduced likelihood of including particular (
Resumo:
The role of habitat structure in controlling the composition of assemblages has often been studied, but is rarely manipulated so that it is distinguishable from other factors. Differences in habitat structure as determined by differences in mussel size structure may affect the diversity of assemblages associated with mussel beds. Previous studies examining the effect of the size of individual mussels in a patch on the diversity of associated macro-faunal assemblages confounded the age of the patch with the size of the mussels. We manipulated the age of mussel patches and the size of the mussels within them to test experimentally whether the size of mussels influenced the structure of associated assemblages. At one of the two locations considered, the structure of macro-faunal assemblages in patches of larger mussels differed significantly from those in patches of the same age composed of smaller mussels. At this location, the size of mussels did not affect species richness but the abundance and proportion of organisms present differed depending on the size of the mussels. Here patches of larger mussels contained greater numbers of Nematodes and Oligochaetes and a lower abundance of taxa, such as faera forsmani and Lepidonotus clava. We also found that invertebrate assemblages in general differed between the two locations. The effect of the size structure of mussels, however, varied spatially demonstrating that the effect of habitat structure on the diversity of associated assemblages is context dependent.