44 resultados para Bayesian belief networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim-To develop an expert system model for the diagnosis of fine needle aspiration cytology (FNAC) of the breast.

Methods-Knowledge and uncertainty were represented in the form of a Bayesian belief network which permitted the combination of diagnostic evidence in a cumulative manner and provided a final probability for the possible diagnostic outcomes. The network comprised 10 cytological features (evidence nodes), each independently linked to the diagnosis (decision node) by a conditional probability matrix. The system was designed to be interactive in that the cytopathologist entered evidence into the network in the form of likelihood ratios for the outcomes at each evidence node.

Results-The efficiency of the network was tested on a series of 40 breast FNAC specimens. The highest diagnostic probability provided by the network agreed with the cytopathologists' diagnosis in 100% of cases for the assessment of discrete, benign, and malignant aspirates. A typical probably benign cases were given probabilities in favour of a benign diagnosis. Suspicious cases tended to have similar probabilities for both diagnostic outcomes and so, correctly, could not be assigned as benign or malignant. A closer examination of cumulative belief graphs for the diagnostic sequence of each case provided insight into the diagnostic process, and quantitative data which improved the identification of suspicious cases.

Conclusion-The further development of such a system will have three important roles in breast cytodiagnosis: (1) to aid the cytologist in making a more consistent and objective diagnosis; (2) to provide a teaching tool on breast cytological diagnosis for the non-expert; and (3) it is the first stage in the development of a system capable of automated diagnosis through the use of expert system machine vision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostatic intraepithelial neoplasia (PIN) diagnosis and grading are affected by uncertainties which arise from the fact that almost all knowledge of PIN histopathology is expressed in concepts, descriptive linguistic terms, and words. A Bayesian belief network (BBN) was therefore used to reduce the problem of uncertainty in diagnostic clue assessment, while still considering the dependences between elements in the reasoning sequence. A shallow network was used with an open-tree topology, with eight first-level descendant nodes for the diagnostic clues (evidence nodes), each independently linked by a conditional probability matrix to a root node containing the diagnostic alternatives (decision node). One of the evidence nodes was based on the tissue architecture and the others were based on cell features. The system was designed to be interactive, in that the histopathologist entered evidence into the network in the form of likelihood ratios for outcomes at each evidence node. The efficiency of the network was tested on a series of 110 prostate specimens, subdivided as follows: 22 cases of non-neoplastic prostate or benign prostatic tissue (NP), 22 PINs of low grade (PINlow), 22 PINs of high grade (PINhigh), 22 prostatic adenocarcinomas with cribriform pattern (PACcri), and 22 prostatic adenocarcinomas with large acinar pattern (PAClgac). The results obtained in the benign and malignant categories showed that the belief for the diagnostic alternatives is very high, the values being in general more than 0.8 and often close to 1.0. When considering the PIN lesions, the network classified and graded most of the cases with high certainty. However, there were some cases which showed values less than 0.8 (13 cases out of 44), thus indicating that there are situations in which the feature changes are intermediate between contiguous categories or grades. Discrepancy between morphological grading and the BBN results was observed in four out of 44 PIN cases: one PINlow was classified as PINhigh and three PINhigh were classified as PINlow. In conclusion, the network can grade PlN lesions and differentiate them from other prostate lesions with certainty. In particular, it offers a descriptive classifier which is readily implemented and which allows the use of linguistic, fuzzy variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with handling uncertainty as part of the analysis of data from a medical study. The study is investigating connections between the birth weight of babies and the dietary intake of their mothers. Bayesian belief networks were used in the analysis. Their perceived benefits include (i) an ability to represent the evidence emerging from the evolving study, dealing effectively with the inherent uncertainty involved; (ii) providing a way of representing evidence graphically to facilitate analysis and communication with clinicians; (iii) helping in the exploration of the data to reveal undiscovered knowledge; and (iv) providing a means of developing an expert system application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous studies have revealed considerable interobserver and intraobserver variation in the histological classification of preinvasive cervical squamous lesions. The aim of the present study was to develop a decision support system (DSS) for the histological interpretation of these lesions. Knowledge and uncertainty were represented in the form of a Bayesian belief network that permitted the storage of diagnostic knowledge and, for a given case, the collection of evidence in a cumulative manner that provided a final probability for the possible diagnostic outcomes. The network comprised 8 diagnostic histological features (evidence nodes) that were each independently linked to the diagnosis (decision node) by a conditional probability matrix. Diagnostic outcomes comprised normal; koilocytosis; and cervical intraepithelial neoplasia (CIN) 1, CIN II, and CIN M. For each evidence feature, a set of images was recorded that represented the full spectrum of change for that feature. The system was designed to be interactive in that the histopathologist was prompted to enter evidence into the network via a specifically designed graphical user interface (i-Path Diagnostics, Belfast, Northern Ireland). Membership functions were used to derive the relative likelihoods for the alternative feature outcomes, the likelihood vector was entered into the network, and the updated diagnostic belief was computed for the diagnostic outcomes and displayed. A cumulative probability graph was generated throughout the diagnostic process and presented on screen. The network was tested on 50 cervical colposcopic biopsy specimens, comprising 10 cases each of normal, koilocytosis, CIN 1, CIN H, and CIN III. These had been preselected by a consultant gynecological pathologist. Using conventional morphological assessment, the cases were classified on 2 separate occasions by 2 consultant and 2 junior pathologists. The cases were also then classified using the DSS on 2 occasions by the 4 pathologists and by 2 medical students with no experience in cervical histology. Interobserver and intraobserver agreement using morphology and using the DSS was calculated with K statistics. Intraobserver reproducibility using conventional unaided diagnosis was reasonably good (kappa range, 0.688 to 0.861), but interobserver agreement was poor (kappa range, 0.347 to 0.747). Using the DSS improved overall reproducibility between individuals. Using the DSS, however, did not enhance the diagnostic performance of junior pathologists when comparing their DSS-based diagnosis against an experienced consultant. However, the generation of a cumulative probability graph also allowed a comparison of individual performance, how individual features were assessed in the same case, and how this contributed to diagnostic disagreement between individuals. Diagnostic features such as nuclear pleomorphism were shown to be particularly problematic and poorly reproducible. DSSs such as this therefore not only have a role to play in enhancing decision making but also in the study of diagnostic protocol, education, self-assessment, and quality control. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fundamental aspect of health care management is the effective allocation of resources. This is of particular importance in geriatric hospitals where elderly patients tend to have more complex needs. Hospital managers would benefit immensely if they had advance knowledge of patient duration of stay in hospital. Managers could assess the costs of patient care and make allowances for these in their budget. In this paper, we tackle this important problem via a model which predicts the duration of stay distribution of patients in hospital. The approach uses phase-type distributions conditioned on a Bayesian belief network.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper explores semi-qualitative probabilistic networks (SQPNs) that combine numeric and qualitative information. We first show that exact inferences with SQPNs are NPPP-Complete. We then show that existing qualitative relations in SQPNs (plus probabilistic logic and imprecise assessments) can be dealt effectively through multilinear programming. We then discuss learning: we consider a maximum likelihood method that generates point estimates given a SQPN and empirical data, and we describe a Bayesian-minded method that employs the Imprecise Dirichlet Model to generate set-valued estimates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper provides algorithms that use an information-theoretic analysis to learn Bayesian network structures from data. Based on our three-phase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional independence (CI) tests in typical cases. We provide precise conditions that specify when these algorithms are guaranteed to be correct as well as empirical evidence (from real world applications and simulation tests) that demonstrates that these systems work efficiently and reliably in practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents two new score functions based on the Bayesian Dirichlet equivalent uniform (BDeu) score for learning Bayesian network structures. They consider the sensitivity of BDeu to varying parameters of the Dirichlet prior. The scores take on the most adversary and the most beneficial priors among those within a contamination set around the symmetric one. We build these scores in such way that they are decomposable and can be computed efficiently. Because of that, they can be integrated into any state-of-the-art structure learning method that explores the space of directed acyclic graphs and allows decomposable scores. Empirical results suggest that our scores outperform the standard BDeu score in terms of the likelihood of unseen data and in terms of edge discovery with respect to the true network, at least when the training sample size is small. We discuss the relation between these new scores and the accuracy of inferred models. Moreover, our new criteria can be used to identify the amount of data after which learning is saturated, that is, additional data are of little help to improve the resulting model.