173 resultados para Atmospheric radio refractivity.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The complex dynamics of radio-frequency driven atmospheric pressure plasma jets is investigated using various optical diagnostic techniques and numerical simulations. Absolute number densities of ground state atomic oxygen radicals in the plasma effluent are measured by two-photon absorption laser induced fluorescence spectroscopy (TALIF). Spatial profiles are compared with (vacuum) ultra-violet radiation from excited states of atomic oxygen and molecular oxygen, respectively. The excitation and ionization dynamics in the plasma core are dominated by electron impact and observed by space and phase resolved optical emission spectroscopy (PROES). The electron dynamics is governed through the motion of the plasma boundary sheaths in front of the electrodes as illustrated in numerical simulations using a hybrid code based on fluid equations and kinetic treatment of electrons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diagnostic based modelling (DBM) actively combines complementary advantages of numerical plasma simulations and relatively simple optical emission spectroscopy (OES). DBM is employed to determine absolute atomic oxygen ground state densities in a helium–oxygen radio-frequency driven atmospheric pressure plasma jet. A comparatively simple one-dimensional simulation yields detailed information on electron properties governing the population dynamics of excited states. Important characteristics of the electron dynamics are found to be largely insensitive to details of the chemical composition and to be in very good agreement with space and phase-resolved OES. Benchmarking the time and space resolved simulation allows us to subsequently derive effective excitation rates as the basis for DBM with simple space and time integrated OES. The population dynamics of the upper O 3p 3P (? = 844 nm) atomic oxygen state is governed by direct electron impact excitation, dissociative excitation, radiation losses and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through tracer comparison with the upper Ar 2p1 (? = 750.4 nm) state. The presented results for the atomic oxygen density show excellent quantitative agreement with independent two-photon laser-induced fluorescence measurements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plasma ionization, and associated mode transitions, in dual radio-frequency driven atmospheric pressure plasmas are governed through nonlinear frequency coupling in the dynamics of the plasma boundary sheath. Ionization in low-power mode is determined by the nonlinear coupling of electron heating and the momentary local plasma density. Ionization in high-power mode is driven by electron avalanches during phases of transient high electric fields within the boundary sheath. The transition between these distinctly different modes is controlled by the total voltage of both frequency components.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet is investigated using both advanced optical diagnostics and numerical simulations of the dynamic plasma chemistry. Laser spectroscopic measurements of absolute densities of ground state atomic oxygen reveal steep gradients at the interface between the plasma core and the effluent region. Spatial profiles resolving the interelectrode gap within the core plasma indicate that volume processes dominate over surface reactions. Details of the production and destruction processes are investigated in numerical simulations benchmarked by phase-resolved optical emission spectroscopy. The main production mechanisms are electron induced and hence most efficient in the vicinity of the plasma boundary sheath, where electrons are energized. The destruction is driven through chemical heavy particle reactions. The resulting spatial profile of atomic oxygen is relatively flat. The power dependence of the atomic oxygen density obtained by the numerical simulation is in very good agreement with the laser spectroscopic measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atmospheric pressure plasma jet is a capacitively coupled radio frequency discharge (13.56 MHz) running with a high helium flux (2m3 h-1) between concentric electrodes. Small amounts (0.5%) of admixed molecular oxygen do not disturb the homogeneous plasma discharge. The jet effluent leaving the discharge through the ring-shaped nozzle contains high concentrations of radicals at a low gas temperature—the key property for a variety of applications aiming at treatment of thermally sensitive surfaces. We report on absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence (TALIF) spectroscopy in the jet effluent. Calibration is performed with the aid of a comparative TALIF measurement with xenon. An excitation scheme (different from the one earlier published) providing spectral matching of both the two-photon resonances and the fluorescence transitions is applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coplanar microscale atmospheric pressure plasma jet (µ-APPJ) is a capacitively coupled radio frequency discharge (13.56 MHz, ~15W rf power) designed for optimized optical diagnostic access. It is operated in a homogeneous glow mode with a noble gas flow (1.4 slm He) containing a small admixture of molecular oxygen (~0.5%). Ground state atomic oxygen densities in the effluent up to 2 × 1014 cm-3 are measured by two-photon absorption laser-induced fluorescence spectroscopy (TALIF) providing space resolved density maps. The quantitative calibration of the TALIF setup is performed by comparative measurements with xenon. A maximum of the atomic oxygen density is observed for 0.6% molecular oxygen admixture. Furthermore, an increase in the rf power up to about 15W (depending on gas flow and mixture) leads to an increase in the effluent’s atomic oxygen density, then reaching a constant level for higher powers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absolute atomic oxygen ground state densities in a radio-frequency driven atmospheric pressure plasma jet, operated in a helium-oxygen mixture, are determined using diagnostic based modeling. One-dimensional numerical simulations of the electron dynamics are combined with time integrated optical emission spectroscopy. The population dynamics of the upper O 3p 3P (l=844 nm) atomic oxygen state is governed by direct electron impact excitation, dissociative excitation, radiation losses, and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through comparison with the upper Ar 2p1 (l=750.4 nm) state. Results for spatial profiles and power variations are presented and show excellent quantitative agreement with independent two-photon laser-induced fluorescence measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex dynamics of ionization and excitation mechanisms in capacitively coupled radio-frequency plasmas is discussed for single- and dual-frequency operations in low-pressure and atmospheric pressure plasmas. Electrons are energized through the dynamics of electric fields in the vicinity of the plasma boundary sheaths. Distinctly different power dissipation mechanisms can either co-exist or initiate mode transitions exhibiting characteristic spatio-temporal ionization structures. Phase resolved optical emission spectroscopy, in combination with adequate modelling of the population dynamics of excited states, and numerical simulations reveal dissipation associated with sheath expansion, sheath collapse, transient electron avalanches and wave–particle interactions. In dual-frequency systems the relative phase between the two frequency components provides additional strategies to tailor the plasma dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A real-time VHF swept frequency (20–300 MHz) reflectometry measurement for radio-frequency capacitive-coupled atmospheric pressure plasmas is described. The measurement is scalar, non-invasive and deployed on the main power line of the plasma chamber. The purpose of this VHF signal injection is to remotely interrogate in real-time the frequency reflection properties of plasma. The information obtained is used for remote monitoring of high-value atmospheric plasma processing. Measurements are performed under varying gas feed (helium mixed with 0–2% oxygen) and power conditions (0–40 W) on two contrasting reactors. The first is a classical parallel-plate chamber driven at 16 MHz with well-defined electrical grounding but limited optical access and the second is a cross-field plasma jet driven at 13.56 MHz with open optical access but with poor electrical shielding of the driven electrode. The electrical measurements are modelled using a lumped element electrical circuit to provide an estimate of power dissipated in the plasma as a function of gas and applied power. The performances of both reactors are evaluated against each other. The scalar measurements reveal that 0.1% oxygen admixture in helium plasma can be detected. The equivalent electrical model indicates that the current density between the parallel-plate reactor is of the order of 8–20 mA cm-2 . This value is in accord with 0.03 A cm-2 values reported by Park et al (2001 J. Appl. Phys. 89 20–8). The current density of the cross-field plasma jet electrodes is found to be 20 times higher. When the cross-field plasma jet unshielded electrode area is factored into the current density estimation, the resultant current density agrees with the parallel-plate reactor. This indicates that the unshielded reactor radiates electromagnetic energy into free space and so acts as a plasma antenna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of a cold (<40 °C) radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. Gel electrophoresis was used to analyze the DNA forms post-treatment. The experimental data are fitted to a rate equation model that allows for quantitative determination of the rates of single and double strand break formation. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We unravel the complex chemistry in both the neutral and ionic systems of a radio-frequency-driven atmospheric-pressure plasma in a helium-oxygen mixture (He-0.5% O) with air impurity levels from 0 to 500 ppm of relative humidity from 0% to 100% using a zero-dimensional, time-dependent global model. Effects of humid air impurity on absolute densities and the dominant production and destruction pathways of biologically relevant reactive neutral species are clarified. A few hundred ppm of air impurity crucially changes the plasma from a simple oxygen-dependent plasma to a complex oxygen-nitrogen-hydrogen plasma. The density of reactive oxygen species decreases from 10 to 10 cm, which in turn results in a decrease in the overall chemical reactivity. Reactive nitrogen species (10 cm ), atomic hydrogen and hydroxyl radicals (10-10 cm) are generated in the plasma. With 500 ppm of humid air impurity, the densities of positively charged ions and negatively charged ions slightly increase and the electron density slightly decreases (to the order of 10 cm). The electronegativity increases up to 2.3 compared with 1.5 without air admixture. Atomic hydrogen, hydroxyl radicals and oxygen ions significantly contribute to the production and destruction of reactive oxygen and reactive nitrogen species. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium-oxygen mixture plasmas (He-O, helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of a radio-frequency driven, microscale non thermal atmospheric pressure plasma jet operated in helium with vol. 0.3% molecular oxygen gas admixture, on PC-3 prostate cancer cells has been investigated. The viability of cells exposed to the plasma was found to decrease with increasing plasma exposure time, with apoptosis through caspase and PARP cleavage being observed. High concentrations of nitrite and nitrate were detected in growth media exposed to the plasma and were found to increase in a time dependent manner post exposure. This indicates a slow release of reactive nitrogen species into the growth media, which is likely to influence cellular response to plasma exposure.