17 resultados para Antenna Array
Resumo:
It is shown that the direction-of-arrival (DoA) information carried by an incident electromagnetic (EM) wave can be encoded into the evanescent near field of an electrically small resonance antenna array with a spatial rate higher than that of the incident field oscillation rate in free space. Phase conjugation of the received signal leads to the retrodirection of the near field in the antenna array environment, which in turn generates a retrodirected far-field beam toward the original DoA. This EM phenomenon enables electrically small retrodirective antenna arrays with superdirective, angular super-resolution, auto-pointing properties for an arbitrary DoA. A theoretical explanation of the phenomenon based on first principal observations is given and full-wave simulations demonstrate a realizability route for the proposed retrodirective terminal that is comprised of resonance dipole antenna elements. Specifically, it is shown that a three-element disk-loaded retrodirective dipole array with 0.15\lambda spacings can achieve a 3.4-dBi maximal gain, 3-dBi front-to-back ratio, and 13% return loss fractional bandwidth (at the 10-dB level). Then, it is demonstrated that the radiation gain of a three-element array can be improved to approximately 6 dBi at the expense of the return loss fractional bandwidth reduction (2%).
Resumo:
We consider a multipair relay channel, where multiple sources communicate with multiple destinations with the help of a full-duplex (FD) relay station (RS). All sources and destinations have a single antenna, while the RS is equipped with massive arrays. We assume that the RS estimates the channels by using training sequences transmitted from sources and destinations. Then, it uses maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To significantly reduce the loop interference (LI) effect, we propose two massive MIMO processing techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the RS. We derive an exact achievable rate in closed-form and evaluate the system spectral efficiency. We show that, by doubling the number of antennas at the RS, the transmit power of each source and of the RS can be reduced by 1.5 dB if the pilot power is equal to the signal power and by 3 dB if the pilot power is kept fixed, while maintaining a given quality-of-service. Furthermore, we compare FD and half-duplex (HD) modes and show that FD improves significantly the performance when the LI level is low.
Resumo:
The aim of this work was to track and verify the delivery of respiratory-gated irradiations, performed with three versions of TrueBeam linac, using a novel phantom arrangement that combined the OCTAVIUS® SRS 1000 array with a moving platform. The platform was programmed to generate sinusoidal motion of the array. This motion was tracked using the real-time position management (RPM) system and four amplitude gating options were employed to interrupt MV beam delivery when the platform was not located within set limits. Time-resolved spatial information extracted from analysis of x-ray fluences measured by the array was compared to the programmed motion of the platform and to the trace recorded by the RPM system during the delivery of the x-ray field. Temporal data recorded by the phantom and the RPM system were validated against trajectory log files, recorded by the linac during the irradiation, as well as oscilloscope waveforms recorded from the linac target signal. Gamma analysis was employed to compare time-integrated 2D x-ray dose fluences with theoretical fluences derived from the probability density function for each of the gating settings applied, where gamma criteria of 2%/2 mm, 1%/1 mm and 0.5%/0.5 mm were used to evaluate the limitations of the RPM system. Excellent agreement was observed in the analysis of spatial information extracted from the SRS 1000 array measurements. Comparisons of the average platform position with the expected position indicated absolute deviations of <0.5 mm for all four gating settings. Differences were observed when comparing time-resolved beam-on data stored in the RPM files and trajectory logs to the true target signal waveforms. Trajectory log files underestimated the cycle time between consecutive beam-on windows by 10.0 ± 0.8 ms. All measured fluences achieved 100% pass-rates using gamma criteria of 2%/2 mm and 50% of the fluences achieved pass-rates >90% when criteria of 0.5%/0.5 mm were used. Results using this novel phantom arrangement indicate that the RPM system is capable of accurately gating x-ray exposure during the delivery of a fixed-field treatment beam.
Resumo:
By modification of the classical retrodirective arrays (RDAs) architecture a directional modulation (DM) transmitter can be realized without the need for synthesis. Importantly, through analytical analysis and exemplar simulations, it is proved that, besides the conventional DM application scenario, i.e., secure transmission to one legitimate receiver located along one spatial direction in free space, the proposed synthesis-free DM transmitter should also perform well for systems where there are more than one legitimate receivers positioned along different directions in free space, and where one or more legitimate receivers exist in a multipath environment. None of these have ever been achieved before using synthesis-free DM arrangements.
Resumo:
This paper presents a novel high symmetry balun which significantly improves the performance of dipole-based dual-polarized antennas. The new balun structure provides enhanced differential capability leading to high performance in terms of port-to-port isolation and far-field cross polarization. An example antenna using this balun is proposed. The simulated results show 53.5% of fractional bandwidth within the band 1.71−2.96 GHz (VSWR<1.5) and port-to-port isolation >59 dB. The radiation characteristic shows around 9 dBi of gain and far-field cross polarization <−48 dBi over the entire bandwidth. The detailed balun functioning and full antenna measurements will be presented during the conference. Performance comparison with similar structures will be also provided.
Resumo:
Deletion of the TP53 gene on chromosome 17p13.1 is the prognostic factor associated with the shortest survival in CLL. We used array-based comparative genomic hybridisation (arrayCGH) to identify additional DNA copy number changes in peripheral blood samples from 74 LRF CLL4 trial patients, 37 with >or=5% and 37 without TP53-deleted cells. ArrayCGH reliably detected deletions on 17p, including the TP53 locus, in cases with >or=50%TP53-deleted cells detected by fluorescence in situ hybridisation, plus seven additional cases with deleted regions on 17p excluding TP53. Losses on chromosomal regions 18p and/or 20p were found exclusively in cases with >or=5%TP53-deleted cells (por=5%TP53-deleted cases (p=0.02). In particular, amplification of 2p and deletion of 6q were both more frequent. Cases with >20%TP53-deleted cells had the worst prognosis in the LRF CLL4 trial.
Resumo:
We investigate the secrecy performance of dualhop amplify-and-forward (AF) multi-antenna relaying systems over Rayleigh fading channels, by taking into account the direct link between the source and destination. In order to exploit the available direct link and the multiple antennas for secrecy improvement, different linear processing schemes at the relay and different diversity combining techniques at the destination are proposed, namely, 1) Zero-forcing/Maximal ratio combining (ZF/MRC), 2) ZF/Selection combining (ZF/SC), 3) Maximal ratio transmission/MRC (MRT/MRC) and 4) MRT/Selection combining (MRT/SC). For all these schemes, we present new closed-form approximations for the secrecy outage probability. Moreover, we investigate a benchmark scheme, i.e., cooperative jamming/ZF (CJ/ZF), where the secrecy outage probability is obtained in exact closed-form. In addition, we present asymptotic secrecy outage expressions for all the proposed schemes in the high signal-to-noise ratio (SNR) regime, in order to characterize key design parameters, such as secrecy diversity order and secrecy array gain. The outcomes of this paper can be summarized as follows: a) MRT/MRC and MRT/SC achieve a full diversity order of M + 1, ZF/MRC and ZF/SC achieve a diversity order of M, while CJ/ZF only achieves unit diversity order, where M is the number of antennas at the relay. b) ZF/MRC (ZF/SC) outperforms the corresponding MRT/MRC (MRT/SC) in the low SNR regime, while becomes inferior to the corresponding MRT/MRC (MRT/SC) in the high SNR. c) All of the proposed schemes tend to outperform the CJ/ZF with moderate number of antennas, and linear processing schemes with MRC attain better performance than those with SC.
Resumo:
In this paper, we investigate the secrecy outage performance of spectrum sharing multiple-input multiple-output networks using generalized transmit antenna selection with maximal ratio combining over Nakagami-m channels. In particular, the outdated channel state information is considered at the process of antenna selection due to feedback delay. Considering a practical passive eavesdropper scenario, we derive the exact and asymptotic closed-form expressions of secrecy outage probability, which enable us to evaluate the secrecy performance with high efficiency and present a new design insight into the impact of key parameters on the secrecy performance. In addition, the analytical results demonstrate that the achievable secrecy diversity order is only determined by the parameters of the secondary network, while other parameters related to primary or eavesdropper’s channels have a significantly impact on the secrecy coding gain.
Resumo:
Ti nanowire arrays vertically standing on Ti foam prepared by a facile corrosion method were used as self-supported Li-O2 battery cathodes. The batteries exhibited enhanced durability at high rate current densities (e.g. cycling 640 times at 5 A g-1).
Resumo:
In this paper a new method of establishing secret keys for wireless communications is proposed. A retrodirective array (RDA) that is configured to receive and re-transmit at different frequencies is utilized as a relay node. Specifically the analogue RDA is able to respond in ‘real-time’, reducing the required number of time slots for key establishment to two, compared with at least three in previous relay key generation schemes. More importantly, in the proposed architecture equivalent reciprocal wireless channels between legitimate keying nodes can be randomly updated within one channel coherence time period, leading to greatly increased key generation rates (KGRs) in slow fading environment. The secrecy performance of this RDA assisted key generation system is evaluated and it is shown that it outperforms previous relay key generation systems.
Physical Layer Security with Threshold-Based Multiuser Scheduling in Multi-antenna Wireless Networks
Resumo:
In this paper, we consider a multiuser downlink wiretap network consisting of one base station (BS) equipped with AA antennas, NB single-antenna legitimate users, and NE single-antenna eavesdroppers over Nakagami-m fading channels. In particular, we introduce a joint secure transmission scheme that adopts transmit antenna selection (TAS) at the BS and explores threshold-based selection diversity (tSD) scheduling over legitimate users to achieve a good secrecy performance while maintaining low implementation complexity. More specifically, in an effort to quantify the secrecy performance of the considered system, two practical scenarios are investigated, i.e., Scenario I: the eavesdropper’s channel state information (CSI) is unavailable at the BS, and Scenario II: the eavesdropper’s CSI is available at the BS. For Scenario I, novel exact closed-form expressions of the secrecy outage probability are derived, which are valid for general networks with an arbitrary number of legitimate users, antenna configurations, number of eavesdroppers, and the switched threshold. For Scenario II, we take into account the ergodic secrecy rate as the principle performance metric, and derive novel closed-form expressions of the exact ergodic secrecy rate. Additionally, we also provide simple and asymptotic expressions for secrecy outage probability and ergodic secrecy rate under two distinct cases, i.e., Case I: the legitimate user is located close to the BS, and Case II: both the legitimate user and eavesdropper are located close to the BS. Our important findings reveal that the secrecy diversity order is AAmA and the slope of secrecy rate is one under Case I, while the secrecy diversity order and the slope of secrecy rate collapse to zero under Case II, where the secrecy performance floor occurs. Finally, when the switched threshold is carefully selected, the considered scheduling scheme outperforms other well known existing schemes in terms of the secrecy performance and complexity tradeoff