28 resultados para Anharmonic oscillators
Resumo:
Nonclassicality is a key ingredient for quantum enhanced technologies and experiments involving macro- scopic quantum coherence. Considering various exactly-solvable quantum-oscillator systems, we address the role played by the anharmonicity of their potential in the establishment of nonclassical features. Specifically, we show that a monotonic relation exists between the the entropic nonlinearity of the considered potentials and their ground state nonclassicality, as quantified by the negativity of the Wigner function. In addition, in order to clarify the role of squeezing--which is not captured by the negativity of the Wigner function--we focus on the Glauber-Sudarshan P-function and address the nonclassicality/nonlinearity relation using the entanglement potential. Finally, we consider the case of a generic sixth-order potential confirming the idea that nonlinearity is a resource for the generation of nonclassicality and may serve as a guideline for the engineering of quantum oscillators.
Resumo:
Two extreme pictures of electron-phonon interactions in nanoscale conductors are compared: one in which the vibrations are treated as independent Einstein atomic oscillators, and one in which electrons are allowed to couple to the full, extended phonon modes of the conductor. It is shown that, under a broad range of conditions, the full-mode picture and the Einstein picture produce essentially the same net power at any given atom in the nanojunction. The two pictures begin to differ significantly in the limit of low lattice temperature and low applied voltages, where electron-phonon scattering is controlled by the detailed phonon energy spectrum. As an illustration of the behaviour in this limit, we study the competition between trapped vibrational modes and extended modes in shaping the inelastic current-voltage characteristics of one-dimensional atomic wires.
Resumo:
The generation of entanglement between two oscillators that interact via a common reservoir is theoretically studied. The reservoir is modeled by a one-dimensional harmonic crystal initially in thermal equilibrium. Starting from a separable state, the oscillators can become entangled after a transient time, that is of the order of the thermalization time scale. This behaviour is observed at finite temperature even when the oscillators are at a distance significantly larger than the crystal's interparticle spacing. The underlying physical mechanisms can be explained by the dynamical properties of the collective variables of the two oscillators which may decouple from or be squeezed by the reservoir. Our predictions can be tested with an ion chain in a linear Paul trap. Copyright (C) EPLA, 2011
Resumo:
We introduce a scheme to reconstruct arbitrary states of networks composed of quantum oscillators-e. g., the motionalstate of trapped ions or the radiation state of coupled cavities. The scheme involves minimal resources and minimal access, in the sense that it (i) requires only the interaction between a one-qubit probe and a single node of the network; (ii) provides the Weyl characteristic function of the network directly from the data, avoiding any tomographic transformation; (iii) involves the tuning of only one coupling parameter. In addition, we show that a number of quantum properties can be extracted without full reconstruction of the state. The scheme can be used for probing quantum simulations of anharmonic many-body systems and quantum computations with continuous variables. Experimental implementation with trapped ions is also discussed and shown to be within reach of current technology.
Resumo:
Distributed massive multiple-input multiple-output (MIMO) combines the array gain of coherent MIMO processing with the proximity gains of distributed antenna setups. In this paper, we analyze how transceiver hardware impairments affect the downlink with maximum ratio transmission. We derive closed-form spectral efficiencies expressions and study their asymptotic behavior as the number of the antennas increases. We prove a scaling law on the hardware quality, which reveals that massive MIMO is resilient to additive distortions, while multiplicative phase noise is a limiting factor. It is also better to have separate oscillators at each antenna than one per BS.
Resumo:
Numerical sound synthesis is often carried out using the finite difference time domain method. In order to analyse the stability of the derived models, energy methods can be used for both linear and nonlinear settings. For Hamiltonian systems the existence of a conserved numerical energy-like quantity can be used to guarantee the stability of the simulations. In this paper it is shown how to derive similar discrete conservation laws in cases where energy is dissipated due to friction or in the presence of an energy source due to an external force. A damped harmonic oscillator (for which an analytic solution is available) is used to present the proposed methodology. After showing how to arrive at a conserved quantity, the simulation of a nonlinear single reed shows an example of an application in the context of musical acoustics.
Resumo:
The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free-energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behavior above the transition temperature.
Resumo:
We address the problem of springlike coupling between bosons in an open-chain configuration where the counter-rotating terms are explicitly included. We show that fruitful insight can be gained by decomposing the time-evolution operator of this problem into a pattern of linear-optics elements. This allows us to provide a clear picture of the effects of the counter-rotating terms in the important problem of long-haul entanglement distribution. The analytic control over the variance matrix of the state of the bosonic register allows us to track the dynamics of the entanglement. This helps in designing a global addressing scheme, complemented by a proper initialization of the register, which quantitatively improves the entanglement between the extremal oscillators in the chain, thus providing a strategy for feasible long-distance entanglement distribution.
Resumo:
We investigate entanglement between collective operators of two blocks of oscillators in an infinite linear harmonic chain. These operators are defined as averages over local operators (individual oscillators) in the blocks. On the one hand, this approach of "physical blocks" meets realistic experimental conditions, where measurement apparatuses do not interact with single oscillators but rather with a whole bunch of them, i.e., where in contrast to usually studied "mathematical blocks" not every possible measurement is allowed. On the other, this formalism naturally allows the generalization to blocks which may consist of several noncontiguous regions. We quantify entanglement between the collective operators by a measure based on the Peres-Horodecki criterion and show how it can be extracted and transferred to two qubits. Entanglement between two blocks is found even in the case where none of the oscillators from one block is entangled with an oscillator from the other, showing genuine bipartite entanglement between collective operators. Allowing the blocks to consist of a periodic sequence of subblocks, we verify that entanglement scales at most with the total boundary region. We also apply the approach of collective operators to scalar quantum field theory.
Resumo:
The glass transition in a quantum Lennard-Jones mixture is investigated by constant-volume path-integral simulations. Particles are assumed to be distinguishable, and the strength of quantum effects is varied by changing h from zero (the classical case) to one (corresponding to a highly quantum-mechanical regime). Quantum delocalization and zero point energy drastically reduce the sensitivity of structural and thermodynamic properties to the glass transition. Nevertheless, the glass transition temperature T-g can be determined by analyzing the phase space mobility of path-integral centroids. At constant volume, the T-g of the simulated model increases monotonically with increasing h. Low temperature tunneling centers are identified, and the quantum versus thermal character of each center is analyzed. The relation between these centers and soft quasilocalized harmonic vibrations is investigated. Periodic minimizations of the potential energy with respect to the positions of the particles are performed to determine the inherent structure of classical and quantum glassy samples. The geometries corresponding to these energy minima are found to be qualitatively similar in all cases. Systematic comparisons for ordered and disordered structures, harmonic and anharmonic dynamics, classical and quantum systems show that disorder, anharmonicity, and quantum effects are closely interlinked.
Resumo:
We study the structural effects produced by the quantization of vibrational degrees of freedom in periodic crystals at zero temperature. To this end we introduce a methodology based on mapping a suitable subspace of the vibrational manifold and solving the Schrödinger equation in it. A number of increasingly accurate approximations ranging from the quasiharmonic approximation (QHA) to the vibrational self-consistent field (VSCF) method and the exact solution are described. A thorough analysis of the approximations is presented for model monatomic and hydrogen-bonded chains, and results are presented for a linear H-F chain where the potential-energy surface is obtained via first-principles electronic structure calculations. We focus on quantum nuclear effects on the lattice constant and show that the VSCF is an excellent approximation, meaning that correlation between modes is not extremely important. The QHA is excellent for covalently bonded mildly anharmonic systems, but it fails for hydrogen-bonded ones. In the latter, the zero-point energy exhibits a nonanalytic behavior at the lattice constant where the H atoms center, which leads to a spurious secondary minimum in the quantum-corrected energy curve. An inexpensive anharmonic approximation of noninteracting modes appears to produce rather good results for hydrogen-bonded chains for small system sizes. However, it converges to the incorrect QHA results for increasing size. Isotope effects are studied for the first-principles H-F chain. We show how the lattice constant and the H-F distance increase with decreasing mass and how the QHA proves to be insufficient to reproduce this behavior.
Resumo:
An exact and general approach to study molecular vibrations is provided by the Watson Hamiltonian. Within this framework, it is customary to omit the contribution of the terms with the vibrational angular momentum and the Watson term, especially for the study of large systems. We discover that this omission leads to results which depend on the choice of the reference structure. The self-consistent solution proposed here yields a geometry that coincides with the quantum averaged geometry of the Watson Hamiltonian and appears to be a promising way for the computation of the vibrational spectra of strongly anharmonic systems.
Resumo:
We present a scheme for generating entanglement between two mechanical oscillators that have never interacted with each other by using an entanglement-swapping protocol. The system under study consists of a Michelson-Morley interferometer comprising mechanical systems embodied by two cantilevers. Each of them is coupled to a field mode via the radiation pressure mechanism. Entanglement between the two mechanical systems is set by measuring the output modes of the interferometer. We also propose a control mechanism for the amount of entanglement based on path-length difference between the two arms.
Resumo:
It is noted that the determination of an oscillation frequency by used of the power spectrum of measured time series is susceptible to filtering of the signal. Similarly, frequency measurements made by period counting can yield different, results depending on how the signal is filtered for noise reduction. In an attempt to eliminate these ambiguities, a new measure of frequency, based on an approximate reconstruction of the phase-space trajectory of the oscillator from the signal, is introduced. This measure is shown to be invariant under linear filtering. For this reason, it is also inaccessible by spectral methods. The effect of filtering on frequency for weakly nonlinear, noisy oscillators, to which this definition applies only imperfectly, is quantified. This work provides the theoretical basis for frequency measurements employing MIRVA filtering.