55 resultados para Alluvium -- Catalonia -- Ter (River)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined how riverine inputs, in particular sediment, influenced the community structure and trophic composition of reef fishes within Rio Bueno, north Jamaica. Due to river discharge a distinct gradient of riverine inputs existed across the study sites. Results suggested that riverine inputs (or a factor associated with them) had a structuring effect on fish community structure. Whilst fish communities at all sites were dominated by small individuals (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freshwater populations of three-spined sticklebacks (Gasterosteus aculeatus) in northern Germany are found as distinct lake and river ecotypes. Adaptation to habitat-specific parasites might influence immune capabilities of stickleback ecotypes. Here, naive laboratory-bred sticklebacks from lake and river populations were exposed reciprocally to parasite environments in a lake and a river habitat. Sticklebacks exposed to lake conditions were infected with higher numbers of parasite species when compared with the river. River sticklebacks in the lake had higher parasite loads than lake sticklebacks in the same habitat. Respiratory burst, granulocyte counts and lymphocyte proliferation of head kidney leucocytes were increased in river sticklebacks exposed to lake when compared with river conditions. Although river sticklebacks exposed to lake conditions showed elevated activation of their immune system, parasites could not be diminished as effectively as by lake sticklebacks in their native habitat. River sticklebacks seem to have reduced their immune-competence potential due to lower parasite diversity in rivers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The partially semi-arid Oldman River basin (OMRB), located in southern Alberta (Canada), has an area of 28 200 km2, is forested in its western headwater part, and is used for agriculture in its eastern part. Hydrometric measurements indicate that flow in the Oldman River has decreased by ~34% between 1913 and 2003, and it is predicted that water withdrawals will increase in the next 20 years. The objective of this study was to determine whether isotope ratio measurements can provide further insight into the water dynamics of the Oldman River and its tributaries. Surface water samples were collected monthly between December 2000 and March 2003. Groundwater samples were taken from 58 wells during one-time sampling trips. Runoff within the OMRB is currently about 70 mm year-1, with a corresponding runoff ratio of 0Ð18. Seasonal flow characteristics are markedly different upstream and downstream of the Oldman River reservoir. Upstream, sharp increases in flow in late spring and early summer are followed by a rapid decrease to base flow levels. Downstream, a prolonged high flow peak is observed due to the storage effect of the Oldman River reservoir. The seasonal variation in the isotopic composition of surface water from upstream sites is small. This suggests that peak runoff is not predominantly generated by melting snow accumulated during the preceding winter, but mainly by relatively well-mixed young groundwater. A significant increase in the d18O and d2H values in the downstream part of the basin was observed. The increase in the isotopic values is partly due to surface water and groundwater influx with progressively higher d18O and d2H values in the eastern part, and partly due to evaporation. Hence, the combination of hydrometric data with isotope measurements yields valuable insights into the water dynamics in the OMRB that may be further refined with more intensive measurement programmes in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to outline how stable isotope techniques can contribute to the elucidation of the sources and the fate of riverine nitrate and sulphate in watershed studies. The example used is the Oldman River Basin (OMRB), located in southern Alberta (Canada). Increasing sulphate concentrations and decreasing d34S values along the flowpath of the Oldman River indicate that oxidation of pyrite in tills is a major source of riverine sulphate in the agriculturally used portion of the OMRB. Chemical and isotopic data showed that manure-derived nitrogen contributes significantly to the increase in nitrate concentrations in the Oldman River and its tributaries draining agricultural land. It is suggested that hydrological conditions control agricultural return flows to the surface water bodies in southern Alberta and impart significant seasonal variations on concentrations and isotopic compositions of riverine nitrate. Combining isotopic, chemical, and hydrometric data permitted us to estimate the relative contribution of major sources to the total solute fluxes. Hence, we submit that isotopic measurements can make an important contribution to the identification of nutrient and pollutant sources and to river basin management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Oldman River Basin (OMRB), located in southern Alberta (Canada), with an area of 28,200 km2, is mainly forested in its western part and is used for intensive agriculture in its eastern part. The objective of this paper is to estimate the nitrogen (N) budget for the Oldman River Basin as a whole and its sub-basins, and to discuss differences in the N budget between various sub-basins. Better knowledge of the N budget in this watershed may be also utilized for understanding N dynamics in similar watersheds within semi-arid climatic regions. The model used is a mass balance spreadsheet model that takes into account N inputs and N export through surface water. During the last 120 years, anthropogenic N inputs to the OMRB have increased circa 40 fold. By the end of the 20th century, the OMRB received an annualN input of about 5174 kg N km-2 yr-1, whereas only about 25 kg N km-2 yr-1 were exported via riverine flow. For the sub-basins, annual N inputs ranged from 2516 to 19011 kg N km-2 yr-1, and annual N export via riverine flows varied between 6 and 277 kg N km-2 yr-1. Over 85% of total N inputs to the OMRB are due to anthropogenic activities, including manure (55%), synthetic fertilizer (27%), and N fixation on agricultural lands (4%). Sewage accounted for less than 1%, and N inputs from atmospheric deposition and fixation in forests represented 6 and 8% respectively. Despite increasing anthropogenic N inputs, N export with riverine flow currently accounts for only 1% of the inputs, indicating thatmost of theNinputs are currently retained in the OMRB or are re-emitted into the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations and isotopic compositions of NO-3 from the Oldman River (OMR) and some of its tributaries (Alberta, Canada) have been determined on a monthly basis since December 2000 to assess temporal and spatial variations of riverine NO-3 sources within the OMR basin. For the OMR sites, NO-3 -N concentrations reached up to 0.34 mg L-1, d15N-NO-3 values varied between –0.3 and +13.8‰, and d18O-NO-3 values ranged from –10.0 to +5.7‰. For the tributary sites, NO-3 -N concentrations were as high as 8.81 mg L-1, d15N-NO-3 values varied between –2.5 and +23.4‰, and d18O-NO-3 values ranged from –15.2 to +3.4‰. Tributaries in the western, relatively pristine forested part of the watershed add predominantly NO-3 to the OMR with d15N-NO-3 indicative of soil nitrification. In contrast, tributaries in the eastern agriculturally-urban-industrially-used part of the basin contribute NO-3 with d15N-NO-3 values of about +16‰ indicative of manure and/or sewage derived NO-3. This difference in d15N-NO-3 values of tributaries was found to be independent of the season, but rather indicates a spatial change in the NO-3 source, which correlates with land use changes within the OMR basin. As a consequence of tributary influx, d15N-NO-3 values in the Oldman River increased from +6‰ in the downstream direction (W to E), although [NO-3 -N] increased only moderately (generally

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Populations of Gammarus duebeni celticus, previously the only amphipod species resident in the rivers of the Lough Neagh catchment, N. Ireland, have been subjected to invasion by G. pulex from the British mainland. Numerous previous studies have investigated the potential behavioural mechanisms, principally differential mutual predation, underlying the replacement of G. d. celticus by G. pulex in Irish waters, and the mutually exclusive distributions of these species in Britain and mainland Europe. However, the relative degree of influence of abiotic versus biotic factors in structuring these amphipod communities remains unresolved. This study used principal component analysis (PCA) to distinguish physico-chemical parameters that have significant roles in determining the current distribution of G. pulex relative to G. d. celticus in L. Neagh rivers. We show that the original domination of rivers by the native G. d, celticus has changed radically, with many sites in several rivers containing either both species or only G. pulex. G. pulex was more abundant than the G. d. celticus in sites with low dissolved oxygen levels. This was reflected in the macroinvertebrate assemblages associated with G. pulex in these sites, which tended to be those tolerant of low biological water quality. The present study thus emphasizes the importance of the habitat template, particularly water quality, for Gammarus spp. interactions. If rivers become increasingly stressed by organic pollution, it is probable the range expansion of G. pulex will continue. Because these two species are not ecological equivalents, the outcomes of G. pulex incursions into G. d. celticus sites may ultimately depend on the prevailing physico-chemical regimes in each site.